ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
(Generate patch)

Comparing:
trunk/src/math/SquareMatrix.hpp (file contents), Revision 146 by tim, Fri Oct 22 23:09:57 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
66 <            typedef Real ElemType;
67 <            typedef Real* ElemPoinerType;
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * @template Real the element type
61 >   * @template Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <            /** default constructor */
70 <            SquareMatrix() {
71 <                for (unsigned int i = 0; i < Dim; i++)
72 <                    for (unsigned int j = 0; j < Dim; j++)
73 <                        data_[i][j] = 0.0;
74 <             }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <            /** copy constructor */
77 <            SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
78 <            }
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79 >
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            /** copy assignment operator */
90 <            SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 <                RectMatrix<Real, Dim, Dim>::operator=(m);
92 <                return *this;
93 <            }
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94                                    
95 <            /** Retunrs  an identity matrix*/
95 >    /** Retunrs  an identity matrix*/
96  
97 <           static SquareMatrix<Real, Dim> identity() {
98 <                SquareMatrix<Real, Dim> m;
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99                  
100 <                for (unsigned int i = 0; i < Dim; i++)
101 <                    for (unsigned int j = 0; j < Dim; j++)
102 <                        if (i == j)
103 <                            m(i, j) = 1.0;
104 <                        else
105 <                            m(i, j) = 0.0;
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <                return m;
108 <            }
107 >      return m;
108 >    }
109  
110 <            /**
111 <             * Retunrs  the inversion of this matrix.
112 <             * @todo need implementation
113 <             */
114 <             SquareMatrix<Real, Dim>  inverse() {
115 <                 SquareMatrix<Real, Dim> result;
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <                 return result;
118 <            }        
117 >      return result;
118 >    }        
119  
120 <            /**
121 <             * Returns the determinant of this matrix.
122 <             * @todo need implementation
123 <             */
124 <            Real determinant() const {
125 <                Real det;
126 <                return det;
127 <            }
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128  
129 <            /** Returns the trace of this matrix. */
130 <            Real trace() const {
131 <               Real tmp = 0;
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132                
133 <                for (unsigned int i = 0; i < Dim ; i++)
134 <                    tmp += data_[i][i];
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <                return tmp;
137 <            }
136 >      return tmp;
137 >    }
138  
139 <            /** Tests if this matrix is symmetrix. */            
140 <            bool isSymmetric() const {
141 <                for (unsigned int i = 0; i < Dim - 1; i++)
142 <                    for (unsigned int j = i; j < Dim; j++)
143 <                        if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
144 <                            return false;
139 >    /** Tests if this matrix is symmetrix. */            
140 >    bool isSymmetric() const {
141 >      for (unsigned int i = 0; i < Dim - 1; i++)
142 >        for (unsigned int j = i; j < Dim; j++)
143 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
144 >            return false;
145                          
146 <                return true;
147 <            }
146 >      return true;
147 >    }
148  
149 <            /** Tests if this matrix is orthogonal. */            
150 <            bool isOrthogonal() {
151 <                SquareMatrix<Real, Dim> tmp;
149 >    /** Tests if this matrix is orthogonal. */            
150 >    bool isOrthogonal() {
151 >      SquareMatrix<Real, Dim> tmp;
152  
153 <                tmp = *this * transpose();
153 >      tmp = *this * transpose();
154  
155 <                return tmp.isDiagonal();
156 <            }
155 >      return tmp.isDiagonal();
156 >    }
157  
158 <            /** Tests if this matrix is diagonal. */
159 <            bool isDiagonal() const {
160 <                for (unsigned int i = 0; i < Dim ; i++)
161 <                    for (unsigned int j = 0; j < Dim; j++)
162 <                        if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
163 <                            return false;
158 >    /** Tests if this matrix is diagonal. */
159 >    bool isDiagonal() const {
160 >      for (unsigned int i = 0; i < Dim ; i++)
161 >        for (unsigned int j = 0; j < Dim; j++)
162 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
163 >            return false;
164                          
165 <                return true;
166 <            }
165 >      return true;
166 >    }
167  
168 <            /** Tests if this matrix is the unit matrix. */
169 <            bool isUnitMatrix() const {
170 <                if (!isDiagonal())
171 <                    return false;
168 >    /** Tests if this matrix is the unit matrix. */
169 >    bool isUnitMatrix() const {
170 >      if (!isDiagonal())
171 >        return false;
172                  
173 <                for (unsigned int i = 0; i < Dim ; i++)
174 <                    if (fabs(data_[i][i] - 1) > oopse::epsilon)
175 <                        return false;
173 >      for (unsigned int i = 0; i < Dim ; i++)
174 >        if (fabs(this->data_[i][i] - 1) > epsilon)
175 >          return false;
176                      
177 <                return true;
178 <            }        
177 >      return true;
178 >    }        
179  
180 <            /** @todo need implementation */
181 <            void diagonalize() {
182 <                //jacobi(m, eigenValues, ortMat);
183 <            }
180 >    /** Return the transpose of this matrix */
181 >    SquareMatrix<Real,  Dim> transpose() const{
182 >      SquareMatrix<Real,  Dim> result;
183 >                
184 >      for (unsigned int i = 0; i < Dim; i++)
185 >        for (unsigned int j = 0; j < Dim; j++)              
186 >          result(j, i) = this->data_[i][j];
187  
188 <            /**
189 <             * Jacobi iteration routines for computing eigenvalues/eigenvectors of
190 <             * real symmetric matrix
191 <             *
192 <             * @return true if success, otherwise return false
193 <             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
194 <             *     overwritten
195 <             * @param w will contain the eigenvalues of the matrix On return of this function
196 <             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
197 <             *    normalized and mutually orthogonal.
198 <             */
188 >      return result;
189 >    }
190 >            
191 >    /** @todo need implementation */
192 >    void diagonalize() {
193 >      //jacobi(m, eigenValues, ortMat);
194 >    }
195 >
196 >    /**
197 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
198 >     * real symmetric matrix
199 >     *
200 >     * @return true if success, otherwise return false
201 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
202 >     *     overwritten
203 >     * @param w will contain the eigenvalues of the matrix On return of this function
204 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
205 >     *    normalized and mutually orthogonal.
206 >     */
207            
208 <            static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
209 <                                  SquareMatrix<Real, Dim>& v);
210 <    };//end SquareMatrix
208 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
209 >                      SquareMatrix<Real, Dim>& v);
210 >  };//end SquareMatrix
211  
212  
213 < /*=========================================================================
213 >  /*=========================================================================
214  
215    Program:   Visualization Toolkit
216    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 181 | Line 219 | namespace oopse {
219    All rights reserved.
220    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
221  
222 <     This software is distributed WITHOUT ANY WARRANTY; without even
223 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
224 <     PURPOSE.  See the above copyright notice for more information.
222 >  This software is distributed WITHOUT ANY WARRANTY; without even
223 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
224 >  PURPOSE.  See the above copyright notice for more information.
225  
226 < =========================================================================*/
226 >  =========================================================================*/
227  
228 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
229 <        a(k, l)=h+s*(g-h*tau)
228 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
229 >    a(k, l)=h+s*(g-h*tau)
230  
231   #define VTK_MAX_ROTATIONS 20
232  
233 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
234 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
235 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
236 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
237 <    // normalized.
238 <    template<typename Real, int Dim>
239 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
240 <                                        SquareMatrix<Real, Dim>& v) {
241 <        const int n = Dim;  
242 <        int i, j, k, iq, ip, numPos;
243 <        Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
244 <        Real bspace[4], zspace[4];
245 <        Real *b = bspace;
246 <        Real *z = zspace;
233 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
234 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
235 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
236 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
237 >  // normalized.
238 >  template<typename Real, int Dim>
239 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
240 >                                      SquareMatrix<Real, Dim>& v) {
241 >    const int n = Dim;  
242 >    int i, j, k, iq, ip, numPos;
243 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
244 >    Real bspace[4], zspace[4];
245 >    Real *b = bspace;
246 >    Real *z = zspace;
247  
248 <        // only allocate memory if the matrix is large
249 <        if (n > 4) {
250 <            b = new Real[n];
251 <            z = new Real[n];
252 <        }
248 >    // only allocate memory if the matrix is large
249 >    if (n > 4) {
250 >      b = new Real[n];
251 >      z = new Real[n];
252 >    }
253  
254 <        // initialize
255 <        for (ip=0; ip<n; ip++) {
256 <            for (iq=0; iq<n; iq++) {
257 <                v(ip, iq) = 0.0;
258 <            }
259 <            v(ip, ip) = 1.0;
260 <        }
261 <        for (ip=0; ip<n; ip++) {
262 <            b[ip] = w[ip] = a(ip, ip);
263 <            z[ip] = 0.0;
264 <        }
254 >    // initialize
255 >    for (ip=0; ip<n; ip++) {
256 >      for (iq=0; iq<n; iq++) {
257 >        v(ip, iq) = 0.0;
258 >      }
259 >      v(ip, ip) = 1.0;
260 >    }
261 >    for (ip=0; ip<n; ip++) {
262 >      b[ip] = w[ip] = a(ip, ip);
263 >      z[ip] = 0.0;
264 >    }
265  
266 <        // begin rotation sequence
267 <        for (i=0; i<VTK_MAX_ROTATIONS; i++) {
268 <            sm = 0.0;
269 <            for (ip=0; ip<n-1; ip++) {
270 <                for (iq=ip+1; iq<n; iq++) {
271 <                    sm += fabs(a(ip, iq));
272 <                }
273 <            }
274 <            if (sm == 0.0) {
275 <                break;
276 <            }
266 >    // begin rotation sequence
267 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
268 >      sm = 0.0;
269 >      for (ip=0; ip<n-1; ip++) {
270 >        for (iq=ip+1; iq<n; iq++) {
271 >          sm += fabs(a(ip, iq));
272 >        }
273 >      }
274 >      if (sm == 0.0) {
275 >        break;
276 >      }
277  
278 <            if (i < 3) {                                // first 3 sweeps
279 <                tresh = 0.2*sm/(n*n);
280 <            } else {
281 <                tresh = 0.0;
282 <            }
278 >      if (i < 3) {                                // first 3 sweeps
279 >        tresh = 0.2*sm/(n*n);
280 >      } else {
281 >        tresh = 0.0;
282 >      }
283  
284 <            for (ip=0; ip<n-1; ip++) {
285 <                for (iq=ip+1; iq<n; iq++) {
286 <                    g = 100.0*fabs(a(ip, iq));
284 >      for (ip=0; ip<n-1; ip++) {
285 >        for (iq=ip+1; iq<n; iq++) {
286 >          g = 100.0*fabs(a(ip, iq));
287  
288 <                    // after 4 sweeps
289 <                    if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
290 <                        && (fabs(w[iq])+g) == fabs(w[iq])) {
291 <                        a(ip, iq) = 0.0;
292 <                    } else if (fabs(a(ip, iq)) > tresh) {
293 <                        h = w[iq] - w[ip];
294 <                        if ( (fabs(h)+g) == fabs(h)) {
295 <                            t = (a(ip, iq)) / h;
296 <                        } else {
297 <                            theta = 0.5*h / (a(ip, iq));
298 <                            t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
299 <                            if (theta < 0.0) {
300 <                                t = -t;
301 <                            }
302 <                        }
303 <                        c = 1.0 / sqrt(1+t*t);
304 <                        s = t*c;
305 <                        tau = s/(1.0+c);
306 <                        h = t*a(ip, iq);
307 <                        z[ip] -= h;
308 <                        z[iq] += h;
309 <                        w[ip] -= h;
310 <                        w[iq] += h;
311 <                        a(ip, iq)=0.0;
288 >          // after 4 sweeps
289 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
290 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
291 >            a(ip, iq) = 0.0;
292 >          } else if (fabs(a(ip, iq)) > tresh) {
293 >            h = w[iq] - w[ip];
294 >            if ( (fabs(h)+g) == fabs(h)) {
295 >              t = (a(ip, iq)) / h;
296 >            } else {
297 >              theta = 0.5*h / (a(ip, iq));
298 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
299 >              if (theta < 0.0) {
300 >                t = -t;
301 >              }
302 >            }
303 >            c = 1.0 / sqrt(1+t*t);
304 >            s = t*c;
305 >            tau = s/(1.0+c);
306 >            h = t*a(ip, iq);
307 >            z[ip] -= h;
308 >            z[iq] += h;
309 >            w[ip] -= h;
310 >            w[iq] += h;
311 >            a(ip, iq)=0.0;
312  
313 <                        // ip already shifted left by 1 unit
314 <                        for (j = 0;j <= ip-1;j++) {
315 <                            VTK_ROTATE(a,j,ip,j,iq);
316 <                        }
317 <                        // ip and iq already shifted left by 1 unit
318 <                        for (j = ip+1;j <= iq-1;j++) {
319 <                            VTK_ROTATE(a,ip,j,j,iq);
320 <                        }
321 <                        // iq already shifted left by 1 unit
322 <                        for (j=iq+1; j<n; j++) {
323 <                            VTK_ROTATE(a,ip,j,iq,j);
324 <                        }
325 <                        for (j=0; j<n; j++) {
326 <                            VTK_ROTATE(v,j,ip,j,iq);
327 <                        }
328 <                    }
329 <                }
330 <            }
313 >            // ip already shifted left by 1 unit
314 >            for (j = 0;j <= ip-1;j++) {
315 >              VTK_ROTATE(a,j,ip,j,iq);
316 >            }
317 >            // ip and iq already shifted left by 1 unit
318 >            for (j = ip+1;j <= iq-1;j++) {
319 >              VTK_ROTATE(a,ip,j,j,iq);
320 >            }
321 >            // iq already shifted left by 1 unit
322 >            for (j=iq+1; j<n; j++) {
323 >              VTK_ROTATE(a,ip,j,iq,j);
324 >            }
325 >            for (j=0; j<n; j++) {
326 >              VTK_ROTATE(v,j,ip,j,iq);
327 >            }
328 >          }
329 >        }
330 >      }
331  
332 <            for (ip=0; ip<n; ip++) {
333 <                b[ip] += z[ip];
334 <                w[ip] = b[ip];
335 <                z[ip] = 0.0;
336 <            }
337 <        }
332 >      for (ip=0; ip<n; ip++) {
333 >        b[ip] += z[ip];
334 >        w[ip] = b[ip];
335 >        z[ip] = 0.0;
336 >      }
337 >    }
338  
339 <        //// this is NEVER called
340 <        if ( i >= VTK_MAX_ROTATIONS ) {
341 <            std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
342 <            return 0;
343 <        }
339 >    //// this is NEVER called
340 >    if ( i >= VTK_MAX_ROTATIONS ) {
341 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
342 >      return 0;
343 >    }
344  
345 <        // sort eigenfunctions                 these changes do not affect accuracy
346 <        for (j=0; j<n-1; j++) {                  // boundary incorrect
347 <            k = j;
348 <            tmp = w[k];
349 <            for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
350 <                if (w[i] >= tmp) {                   // why exchage if same?
351 <                    k = i;
352 <                    tmp = w[k];
353 <                }
354 <            }
355 <            if (k != j) {
356 <                w[k] = w[j];
357 <                w[j] = tmp;
358 <                for (i=0; i<n; i++) {
359 <                    tmp = v(i, j);
360 <                    v(i, j) = v(i, k);
361 <                    v(i, k) = tmp;
362 <                }
363 <            }
364 <        }
365 <        // insure eigenvector consistency (i.e., Jacobi can compute vectors that
366 <        // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
367 <        // reek havoc in hyperstreamline/other stuff. We will select the most
368 <        // positive eigenvector.
369 <        int ceil_half_n = (n >> 1) + (n & 1);
370 <        for (j=0; j<n; j++) {
371 <            for (numPos=0, i=0; i<n; i++) {
372 <                if ( v(i, j) >= 0.0 ) {
373 <                    numPos++;
374 <                }
375 <            }
376 <            //    if ( numPos < ceil(double(n)/double(2.0)) )
377 <            if ( numPos < ceil_half_n) {
378 <                for (i=0; i<n; i++) {
379 <                    v(i, j) *= -1.0;
380 <                }
381 <            }
382 <        }
345 >    // sort eigenfunctions                 these changes do not affect accuracy
346 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
347 >      k = j;
348 >      tmp = w[k];
349 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
350 >        if (w[i] >= tmp) {                   // why exchage if same?
351 >          k = i;
352 >          tmp = w[k];
353 >        }
354 >      }
355 >      if (k != j) {
356 >        w[k] = w[j];
357 >        w[j] = tmp;
358 >        for (i=0; i<n; i++) {
359 >          tmp = v(i, j);
360 >          v(i, j) = v(i, k);
361 >          v(i, k) = tmp;
362 >        }
363 >      }
364 >    }
365 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
366 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
367 >    // reek havoc in hyperstreamline/other stuff. We will select the most
368 >    // positive eigenvector.
369 >    int ceil_half_n = (n >> 1) + (n & 1);
370 >    for (j=0; j<n; j++) {
371 >      for (numPos=0, i=0; i<n; i++) {
372 >        if ( v(i, j) >= 0.0 ) {
373 >          numPos++;
374 >        }
375 >      }
376 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
377 >      if ( numPos < ceil_half_n) {
378 >        for (i=0; i<n; i++) {
379 >          v(i, j) *= -1.0;
380 >        }
381 >      }
382 >    }
383  
384 <        if (n > 4) {
385 <            delete [] b;
386 <            delete [] z;
349 <        }
350 <        return 1;
384 >    if (n > 4) {
385 >      delete [] b;
386 >      delete [] z;
387      }
388 +    return 1;
389 +  }
390  
391  
392 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
393   }
394   #endif //MATH_SQUAREMATRIX_HPP
395  

Comparing:
trunk/src/math/SquareMatrix.hpp (property svn:keywords), Revision 146 by tim, Fri Oct 22 23:09:57 2004 UTC vs.
branches/development/src/math/SquareMatrix.hpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines