ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
Revision: 1787
Committed: Wed Aug 29 18:13:11 2012 UTC (12 years, 8 months ago) by gezelter
File size: 12318 byte(s)
Log Message:
Massive multipole rewrite

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SquareMatrix.hpp
45 * @author Teng Lin
46 * @date 10/11/2004
47 * @version 1.0
48 */
49 #ifndef MATH_SQUAREMATRIX_HPP
50 #define MATH_SQUAREMATRIX_HPP
51
52 #include "math/RectMatrix.hpp"
53 #include "utils/NumericConstant.hpp"
54
55 namespace OpenMD {
56
57 /**
58 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 * @brief A square matrix class
60 * @template Real the element type
61 * @template Dim the dimension of the square matrix
62 */
63 template<typename Real, int Dim>
64 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 public:
66 typedef Real ElemType;
67 typedef Real* ElemPoinerType;
68
69 /** default constructor */
70 SquareMatrix() {
71 for (unsigned int i = 0; i < Dim; i++)
72 for (unsigned int j = 0; j < Dim; j++)
73 this->data_[i][j] = 0.0;
74 }
75
76 /** Constructs and initializes every element of this matrix to a scalar */
77 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 }
79
80 /** Constructs and initializes from an array */
81 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 }
83
84
85 /** copy constructor */
86 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 }
88
89 /** copy assignment operator */
90 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 RectMatrix<Real, Dim, Dim>::operator=(m);
92 return *this;
93 }
94
95 /** Retunrs an identity matrix*/
96
97 static SquareMatrix<Real, Dim> identity() {
98 SquareMatrix<Real, Dim> m;
99
100 for (unsigned int i = 0; i < Dim; i++)
101 for (unsigned int j = 0; j < Dim; j++)
102 if (i == j)
103 m(i, j) = 1.0;
104 else
105 m(i, j) = 0.0;
106
107 return m;
108 }
109
110 /**
111 * Retunrs the inversion of this matrix.
112 * @todo need implementation
113 */
114 SquareMatrix<Real, Dim> inverse() {
115 SquareMatrix<Real, Dim> result;
116
117 return result;
118 }
119
120 /**
121 * Returns the determinant of this matrix.
122 * @todo need implementation
123 */
124 Real determinant() const {
125 Real det;
126 return det;
127 }
128
129 /** Returns the trace of this matrix. */
130 Real trace() const {
131 Real tmp = 0;
132
133 for (unsigned int i = 0; i < Dim ; i++)
134 tmp += this->data_[i][i];
135
136 return tmp;
137 }
138
139 /**
140 * Returns the tensor contraction (double dot product) of two rank 2
141 * tensors (or Matrices)
142 * @param t1 first tensor
143 * @param t2 second tensor
144 * @return the tensor contraction (double dot product) of t1 and t2
145 */
146 Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 Real tmp;
148 tmp = 0;
149
150 for (unsigned int i = 0; i < Dim; i++)
151 for (unsigned int j =0; j < Dim; j++)
152 tmp += t1[i][j] * t2[i][j];
153
154 return tmp;
155 }
156
157 /** Tests if this matrix is symmetrix. */
158 bool isSymmetric() const {
159 for (unsigned int i = 0; i < Dim - 1; i++)
160 for (unsigned int j = i; j < Dim; j++)
161 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
162 return false;
163
164 return true;
165 }
166
167 /** Tests if this matrix is orthogonal. */
168 bool isOrthogonal() {
169 SquareMatrix<Real, Dim> tmp;
170
171 tmp = *this * transpose();
172
173 return tmp.isDiagonal();
174 }
175
176 /** Tests if this matrix is diagonal. */
177 bool isDiagonal() const {
178 for (unsigned int i = 0; i < Dim ; i++)
179 for (unsigned int j = 0; j < Dim; j++)
180 if (i !=j && fabs(this->data_[i][j]) > epsilon)
181 return false;
182
183 return true;
184 }
185
186 /**
187 * Returns a column vector that contains the elements from the
188 * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
189 * on.
190 */
191 Vector<Real, Dim> diagonals() const {
192 Vector<Real, Dim> result;
193 for (unsigned int i = 0; i < Dim; i++) {
194 result(i) = this->data_[i][i];
195 }
196 return result;
197 }
198
199 /** Tests if this matrix is the unit matrix. */
200 bool isUnitMatrix() const {
201 if (!isDiagonal())
202 return false;
203
204 for (unsigned int i = 0; i < Dim ; i++)
205 if (fabs(this->data_[i][i] - 1) > epsilon)
206 return false;
207
208 return true;
209 }
210
211 /** Return the transpose of this matrix */
212 SquareMatrix<Real, Dim> transpose() const{
213 SquareMatrix<Real, Dim> result;
214
215 for (unsigned int i = 0; i < Dim; i++)
216 for (unsigned int j = 0; j < Dim; j++)
217 result(j, i) = this->data_[i][j];
218
219 return result;
220 }
221
222 /** @todo need implementation */
223 void diagonalize() {
224 //jacobi(m, eigenValues, ortMat);
225 }
226
227 /**
228 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
229 * real symmetric matrix
230 *
231 * @return true if success, otherwise return false
232 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
233 * overwritten
234 * @param w will contain the eigenvalues of the matrix On return of this function
235 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
236 * normalized and mutually orthogonal.
237 */
238
239 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
240 SquareMatrix<Real, Dim>& v);
241 };//end SquareMatrix
242
243
244 /*=========================================================================
245
246 Program: Visualization Toolkit
247 Module: $RCSfile: SquareMatrix.hpp,v $
248
249 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
250 All rights reserved.
251 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
252
253 This software is distributed WITHOUT ANY WARRANTY; without even
254 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
255 PURPOSE. See the above copyright notice for more information.
256
257 =========================================================================*/
258
259 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
260 a(k, l)=h+s*(g-h*tau)
261
262 #define VTK_MAX_ROTATIONS 20
263
264 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
265 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
266 // output eigenvalues in w; and output eigenvectors in v. Resulting
267 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
268 // normalized.
269 template<typename Real, int Dim>
270 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
271 SquareMatrix<Real, Dim>& v) {
272 const int n = Dim;
273 int i, j, k, iq, ip, numPos;
274 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
275 Real bspace[4], zspace[4];
276 Real *b = bspace;
277 Real *z = zspace;
278
279 // only allocate memory if the matrix is large
280 if (n > 4) {
281 b = new Real[n];
282 z = new Real[n];
283 }
284
285 // initialize
286 for (ip=0; ip<n; ip++) {
287 for (iq=0; iq<n; iq++) {
288 v(ip, iq) = 0.0;
289 }
290 v(ip, ip) = 1.0;
291 }
292 for (ip=0; ip<n; ip++) {
293 b[ip] = w[ip] = a(ip, ip);
294 z[ip] = 0.0;
295 }
296
297 // begin rotation sequence
298 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
299 sm = 0.0;
300 for (ip=0; ip<n-1; ip++) {
301 for (iq=ip+1; iq<n; iq++) {
302 sm += fabs(a(ip, iq));
303 }
304 }
305 if (sm == 0.0) {
306 break;
307 }
308
309 if (i < 3) { // first 3 sweeps
310 tresh = 0.2*sm/(n*n);
311 } else {
312 tresh = 0.0;
313 }
314
315 for (ip=0; ip<n-1; ip++) {
316 for (iq=ip+1; iq<n; iq++) {
317 g = 100.0*fabs(a(ip, iq));
318
319 // after 4 sweeps
320 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
321 && (fabs(w[iq])+g) == fabs(w[iq])) {
322 a(ip, iq) = 0.0;
323 } else if (fabs(a(ip, iq)) > tresh) {
324 h = w[iq] - w[ip];
325 if ( (fabs(h)+g) == fabs(h)) {
326 t = (a(ip, iq)) / h;
327 } else {
328 theta = 0.5*h / (a(ip, iq));
329 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
330 if (theta < 0.0) {
331 t = -t;
332 }
333 }
334 c = 1.0 / sqrt(1+t*t);
335 s = t*c;
336 tau = s/(1.0+c);
337 h = t*a(ip, iq);
338 z[ip] -= h;
339 z[iq] += h;
340 w[ip] -= h;
341 w[iq] += h;
342 a(ip, iq)=0.0;
343
344 // ip already shifted left by 1 unit
345 for (j = 0;j <= ip-1;j++) {
346 VTK_ROTATE(a,j,ip,j,iq);
347 }
348 // ip and iq already shifted left by 1 unit
349 for (j = ip+1;j <= iq-1;j++) {
350 VTK_ROTATE(a,ip,j,j,iq);
351 }
352 // iq already shifted left by 1 unit
353 for (j=iq+1; j<n; j++) {
354 VTK_ROTATE(a,ip,j,iq,j);
355 }
356 for (j=0; j<n; j++) {
357 VTK_ROTATE(v,j,ip,j,iq);
358 }
359 }
360 }
361 }
362
363 for (ip=0; ip<n; ip++) {
364 b[ip] += z[ip];
365 w[ip] = b[ip];
366 z[ip] = 0.0;
367 }
368 }
369
370 //// this is NEVER called
371 if ( i >= VTK_MAX_ROTATIONS ) {
372 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
373 return 0;
374 }
375
376 // sort eigenfunctions these changes do not affect accuracy
377 for (j=0; j<n-1; j++) { // boundary incorrect
378 k = j;
379 tmp = w[k];
380 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
381 if (w[i] >= tmp) { // why exchage if same?
382 k = i;
383 tmp = w[k];
384 }
385 }
386 if (k != j) {
387 w[k] = w[j];
388 w[j] = tmp;
389 for (i=0; i<n; i++) {
390 tmp = v(i, j);
391 v(i, j) = v(i, k);
392 v(i, k) = tmp;
393 }
394 }
395 }
396 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
397 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
398 // reek havoc in hyperstreamline/other stuff. We will select the most
399 // positive eigenvector.
400 int ceil_half_n = (n >> 1) + (n & 1);
401 for (j=0; j<n; j++) {
402 for (numPos=0, i=0; i<n; i++) {
403 if ( v(i, j) >= 0.0 ) {
404 numPos++;
405 }
406 }
407 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
408 if ( numPos < ceil_half_n) {
409 for (i=0; i<n; i++) {
410 v(i, j) *= -1.0;
411 }
412 }
413 }
414
415 if (n > 4) {
416 delete [] b;
417 delete [] z;
418 }
419 return 1;
420 }
421
422
423 typedef SquareMatrix<RealType, 6> Mat6x6d;
424 }
425 #endif //MATH_SQUAREMATRIX_HPP
426

Properties

Name Value
svn:keywords Author Id Revision Date