ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
Revision: 1753
Committed: Tue Jun 12 13:20:28 2012 UTC (12 years, 10 months ago) by gezelter
File size: 11957 byte(s)
Log Message:
Added a double dot tensor contraction.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SquareMatrix.hpp
45 * @author Teng Lin
46 * @date 10/11/2004
47 * @version 1.0
48 */
49 #ifndef MATH_SQUAREMATRIX_HPP
50 #define MATH_SQUAREMATRIX_HPP
51
52 #include "math/RectMatrix.hpp"
53 #include "utils/NumericConstant.hpp"
54
55 namespace OpenMD {
56
57 /**
58 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 * @brief A square matrix class
60 * @template Real the element type
61 * @template Dim the dimension of the square matrix
62 */
63 template<typename Real, int Dim>
64 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 public:
66 typedef Real ElemType;
67 typedef Real* ElemPoinerType;
68
69 /** default constructor */
70 SquareMatrix() {
71 for (unsigned int i = 0; i < Dim; i++)
72 for (unsigned int j = 0; j < Dim; j++)
73 this->data_[i][j] = 0.0;
74 }
75
76 /** Constructs and initializes every element of this matrix to a scalar */
77 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 }
79
80 /** Constructs and initializes from an array */
81 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 }
83
84
85 /** copy constructor */
86 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 }
88
89 /** copy assignment operator */
90 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 RectMatrix<Real, Dim, Dim>::operator=(m);
92 return *this;
93 }
94
95 /** Retunrs an identity matrix*/
96
97 static SquareMatrix<Real, Dim> identity() {
98 SquareMatrix<Real, Dim> m;
99
100 for (unsigned int i = 0; i < Dim; i++)
101 for (unsigned int j = 0; j < Dim; j++)
102 if (i == j)
103 m(i, j) = 1.0;
104 else
105 m(i, j) = 0.0;
106
107 return m;
108 }
109
110 /**
111 * Retunrs the inversion of this matrix.
112 * @todo need implementation
113 */
114 SquareMatrix<Real, Dim> inverse() {
115 SquareMatrix<Real, Dim> result;
116
117 return result;
118 }
119
120 /**
121 * Returns the determinant of this matrix.
122 * @todo need implementation
123 */
124 Real determinant() const {
125 Real det;
126 return det;
127 }
128
129 /** Returns the trace of this matrix. */
130 Real trace() const {
131 Real tmp = 0;
132
133 for (unsigned int i = 0; i < Dim ; i++)
134 tmp += this->data_[i][i];
135
136 return tmp;
137 }
138
139 /**
140 * Returns the tensor contraction (double dot product) of two rank 2
141 * tensors (or Matrices)
142 * @param t1 first tensor
143 * @param t2 second tensor
144 * @return the tensor contraction (double dot product) of t1 and t2
145 */
146 Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147 Real tmp;
148 tmp = 0;
149
150 for (unsigned int i = 0; i < Dim; i++)
151 for (unsigned int j =0; j < Dim; j++)
152 tmp += t1[i][j] * t2[i][j];
153
154 return tmp;
155 }
156
157
158 /** Tests if this matrix is symmetrix. */
159 bool isSymmetric() const {
160 for (unsigned int i = 0; i < Dim - 1; i++)
161 for (unsigned int j = i; j < Dim; j++)
162 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 return false;
164
165 return true;
166 }
167
168 /** Tests if this matrix is orthogonal. */
169 bool isOrthogonal() {
170 SquareMatrix<Real, Dim> tmp;
171
172 tmp = *this * transpose();
173
174 return tmp.isDiagonal();
175 }
176
177 /** Tests if this matrix is diagonal. */
178 bool isDiagonal() const {
179 for (unsigned int i = 0; i < Dim ; i++)
180 for (unsigned int j = 0; j < Dim; j++)
181 if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 return false;
183
184 return true;
185 }
186
187 /** Tests if this matrix is the unit matrix. */
188 bool isUnitMatrix() const {
189 if (!isDiagonal())
190 return false;
191
192 for (unsigned int i = 0; i < Dim ; i++)
193 if (fabs(this->data_[i][i] - 1) > epsilon)
194 return false;
195
196 return true;
197 }
198
199 /** Return the transpose of this matrix */
200 SquareMatrix<Real, Dim> transpose() const{
201 SquareMatrix<Real, Dim> result;
202
203 for (unsigned int i = 0; i < Dim; i++)
204 for (unsigned int j = 0; j < Dim; j++)
205 result(j, i) = this->data_[i][j];
206
207 return result;
208 }
209
210 /** @todo need implementation */
211 void diagonalize() {
212 //jacobi(m, eigenValues, ortMat);
213 }
214
215 /**
216 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
217 * real symmetric matrix
218 *
219 * @return true if success, otherwise return false
220 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
221 * overwritten
222 * @param w will contain the eigenvalues of the matrix On return of this function
223 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
224 * normalized and mutually orthogonal.
225 */
226
227 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
228 SquareMatrix<Real, Dim>& v);
229 };//end SquareMatrix
230
231
232 /*=========================================================================
233
234 Program: Visualization Toolkit
235 Module: $RCSfile: SquareMatrix.hpp,v $
236
237 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
238 All rights reserved.
239 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
240
241 This software is distributed WITHOUT ANY WARRANTY; without even
242 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
243 PURPOSE. See the above copyright notice for more information.
244
245 =========================================================================*/
246
247 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
248 a(k, l)=h+s*(g-h*tau)
249
250 #define VTK_MAX_ROTATIONS 20
251
252 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
253 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
254 // output eigenvalues in w; and output eigenvectors in v. Resulting
255 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
256 // normalized.
257 template<typename Real, int Dim>
258 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
259 SquareMatrix<Real, Dim>& v) {
260 const int n = Dim;
261 int i, j, k, iq, ip, numPos;
262 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
263 Real bspace[4], zspace[4];
264 Real *b = bspace;
265 Real *z = zspace;
266
267 // only allocate memory if the matrix is large
268 if (n > 4) {
269 b = new Real[n];
270 z = new Real[n];
271 }
272
273 // initialize
274 for (ip=0; ip<n; ip++) {
275 for (iq=0; iq<n; iq++) {
276 v(ip, iq) = 0.0;
277 }
278 v(ip, ip) = 1.0;
279 }
280 for (ip=0; ip<n; ip++) {
281 b[ip] = w[ip] = a(ip, ip);
282 z[ip] = 0.0;
283 }
284
285 // begin rotation sequence
286 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
287 sm = 0.0;
288 for (ip=0; ip<n-1; ip++) {
289 for (iq=ip+1; iq<n; iq++) {
290 sm += fabs(a(ip, iq));
291 }
292 }
293 if (sm == 0.0) {
294 break;
295 }
296
297 if (i < 3) { // first 3 sweeps
298 tresh = 0.2*sm/(n*n);
299 } else {
300 tresh = 0.0;
301 }
302
303 for (ip=0; ip<n-1; ip++) {
304 for (iq=ip+1; iq<n; iq++) {
305 g = 100.0*fabs(a(ip, iq));
306
307 // after 4 sweeps
308 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
309 && (fabs(w[iq])+g) == fabs(w[iq])) {
310 a(ip, iq) = 0.0;
311 } else if (fabs(a(ip, iq)) > tresh) {
312 h = w[iq] - w[ip];
313 if ( (fabs(h)+g) == fabs(h)) {
314 t = (a(ip, iq)) / h;
315 } else {
316 theta = 0.5*h / (a(ip, iq));
317 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 if (theta < 0.0) {
319 t = -t;
320 }
321 }
322 c = 1.0 / sqrt(1+t*t);
323 s = t*c;
324 tau = s/(1.0+c);
325 h = t*a(ip, iq);
326 z[ip] -= h;
327 z[iq] += h;
328 w[ip] -= h;
329 w[iq] += h;
330 a(ip, iq)=0.0;
331
332 // ip already shifted left by 1 unit
333 for (j = 0;j <= ip-1;j++) {
334 VTK_ROTATE(a,j,ip,j,iq);
335 }
336 // ip and iq already shifted left by 1 unit
337 for (j = ip+1;j <= iq-1;j++) {
338 VTK_ROTATE(a,ip,j,j,iq);
339 }
340 // iq already shifted left by 1 unit
341 for (j=iq+1; j<n; j++) {
342 VTK_ROTATE(a,ip,j,iq,j);
343 }
344 for (j=0; j<n; j++) {
345 VTK_ROTATE(v,j,ip,j,iq);
346 }
347 }
348 }
349 }
350
351 for (ip=0; ip<n; ip++) {
352 b[ip] += z[ip];
353 w[ip] = b[ip];
354 z[ip] = 0.0;
355 }
356 }
357
358 //// this is NEVER called
359 if ( i >= VTK_MAX_ROTATIONS ) {
360 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
361 return 0;
362 }
363
364 // sort eigenfunctions these changes do not affect accuracy
365 for (j=0; j<n-1; j++) { // boundary incorrect
366 k = j;
367 tmp = w[k];
368 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
369 if (w[i] >= tmp) { // why exchage if same?
370 k = i;
371 tmp = w[k];
372 }
373 }
374 if (k != j) {
375 w[k] = w[j];
376 w[j] = tmp;
377 for (i=0; i<n; i++) {
378 tmp = v(i, j);
379 v(i, j) = v(i, k);
380 v(i, k) = tmp;
381 }
382 }
383 }
384 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
385 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
386 // reek havoc in hyperstreamline/other stuff. We will select the most
387 // positive eigenvector.
388 int ceil_half_n = (n >> 1) + (n & 1);
389 for (j=0; j<n; j++) {
390 for (numPos=0, i=0; i<n; i++) {
391 if ( v(i, j) >= 0.0 ) {
392 numPos++;
393 }
394 }
395 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
396 if ( numPos < ceil_half_n) {
397 for (i=0; i<n; i++) {
398 v(i, j) *= -1.0;
399 }
400 }
401 }
402
403 if (n > 4) {
404 delete [] b;
405 delete [] z;
406 }
407 return 1;
408 }
409
410
411 typedef SquareMatrix<RealType, 6> Mat6x6d;
412 }
413 #endif //MATH_SQUAREMATRIX_HPP
414

Properties

Name Value
svn:keywords Author Id Revision Date