ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
Revision: 507
Committed: Fri Apr 15 22:04:00 2005 UTC (20 years ago) by gezelter
Original Path: trunk/src/math/SquareMatrix.hpp
File size: 11236 byte(s)
Log Message:
xemacs has been drafted to perform our indentation services

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 70 *
4 gezelter 246 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40 tim 70 */
41 gezelter 246
42 tim 70 /**
43     * @file SquareMatrix.hpp
44     * @author Teng Lin
45     * @date 10/11/2004
46     * @version 1.0
47     */
48 gezelter 507 #ifndef MATH_SQUAREMATRIX_HPP
49 tim 70 #define MATH_SQUAREMATRIX_HPP
50    
51 tim 74 #include "math/RectMatrix.hpp"
52 tim 70
53     namespace oopse {
54    
55 gezelter 507 /**
56     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
57     * @brief A square matrix class
58     * @template Real the element type
59     * @template Dim the dimension of the square matrix
60     */
61     template<typename Real, int Dim>
62     class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
63     public:
64     typedef Real ElemType;
65     typedef Real* ElemPoinerType;
66 tim 70
67 gezelter 507 /** default constructor */
68     SquareMatrix() {
69     for (unsigned int i = 0; i < Dim; i++)
70     for (unsigned int j = 0; j < Dim; j++)
71     this->data_[i][j] = 0.0;
72     }
73 tim 70
74 gezelter 507 /** Constructs and initializes every element of this matrix to a scalar */
75     SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
76     }
77 tim 151
78 gezelter 507 /** Constructs and initializes from an array */
79     SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
80     }
81 tim 151
82    
83 gezelter 507 /** copy constructor */
84     SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
85     }
86 tim 70
87 gezelter 507 /** copy assignment operator */
88     SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
89     RectMatrix<Real, Dim, Dim>::operator=(m);
90     return *this;
91     }
92 tim 137
93 gezelter 507 /** Retunrs an identity matrix*/
94 tim 74
95 gezelter 507 static SquareMatrix<Real, Dim> identity() {
96     SquareMatrix<Real, Dim> m;
97 tim 137
98 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
99     for (unsigned int j = 0; j < Dim; j++)
100     if (i == j)
101     m(i, j) = 1.0;
102     else
103     m(i, j) = 0.0;
104 tim 70
105 gezelter 507 return m;
106     }
107 tim 74
108 gezelter 507 /**
109     * Retunrs the inversion of this matrix.
110     * @todo need implementation
111     */
112     SquareMatrix<Real, Dim> inverse() {
113     SquareMatrix<Real, Dim> result;
114 tim 70
115 gezelter 507 return result;
116     }
117 tim 70
118 gezelter 507 /**
119     * Returns the determinant of this matrix.
120     * @todo need implementation
121     */
122     Real determinant() const {
123     Real det;
124     return det;
125     }
126 tim 70
127 gezelter 507 /** Returns the trace of this matrix. */
128     Real trace() const {
129     Real tmp = 0;
130 tim 137
131 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
132     tmp += this->data_[i][i];
133 tim 70
134 gezelter 507 return tmp;
135     }
136 tim 70
137 gezelter 507 /** Tests if this matrix is symmetrix. */
138     bool isSymmetric() const {
139     for (unsigned int i = 0; i < Dim - 1; i++)
140     for (unsigned int j = i; j < Dim; j++)
141     if (fabs(this->data_[i][j] - this->data_[j][i]) > oopse::epsilon)
142     return false;
143 tim 137
144 gezelter 507 return true;
145     }
146 tim 70
147 gezelter 507 /** Tests if this matrix is orthogonal. */
148     bool isOrthogonal() {
149     SquareMatrix<Real, Dim> tmp;
150 tim 70
151 gezelter 507 tmp = *this * transpose();
152 tim 70
153 gezelter 507 return tmp.isDiagonal();
154     }
155 tim 70
156 gezelter 507 /** Tests if this matrix is diagonal. */
157     bool isDiagonal() const {
158     for (unsigned int i = 0; i < Dim ; i++)
159     for (unsigned int j = 0; j < Dim; j++)
160     if (i !=j && fabs(this->data_[i][j]) > oopse::epsilon)
161     return false;
162 tim 137
163 gezelter 507 return true;
164     }
165 tim 137
166 gezelter 507 /** Tests if this matrix is the unit matrix. */
167     bool isUnitMatrix() const {
168     if (!isDiagonal())
169     return false;
170 tim 70
171 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
172     if (fabs(this->data_[i][i] - 1) > oopse::epsilon)
173     return false;
174 tim 137
175 gezelter 507 return true;
176     }
177 tim 70
178 gezelter 507 /** Return the transpose of this matrix */
179     SquareMatrix<Real, Dim> transpose() const{
180     SquareMatrix<Real, Dim> result;
181 tim 273
182 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
183     for (unsigned int j = 0; j < Dim; j++)
184     result(j, i) = this->data_[i][j];
185 tim 273
186 gezelter 507 return result;
187     }
188 tim 273
189 gezelter 507 /** @todo need implementation */
190     void diagonalize() {
191     //jacobi(m, eigenValues, ortMat);
192     }
193 tim 76
194 gezelter 507 /**
195     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
196     * real symmetric matrix
197     *
198     * @return true if success, otherwise return false
199     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
200     * overwritten
201     * @param w will contain the eigenvalues of the matrix On return of this function
202     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
203     * normalized and mutually orthogonal.
204     */
205 tim 137
206 gezelter 507 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
207     SquareMatrix<Real, Dim>& v);
208     };//end SquareMatrix
209 tim 70
210 tim 76
211 gezelter 507 /*=========================================================================
212 tim 76
213 tim 123 Program: Visualization Toolkit
214     Module: $RCSfile: SquareMatrix.hpp,v $
215 tim 76
216 tim 123 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
217     All rights reserved.
218     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
219    
220 gezelter 507 This software is distributed WITHOUT ANY WARRANTY; without even
221     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
222     PURPOSE. See the above copyright notice for more information.
223 tim 123
224 gezelter 507 =========================================================================*/
225 tim 123
226 gezelter 507 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
227     a(k, l)=h+s*(g-h*tau)
228 tim 123
229     #define VTK_MAX_ROTATIONS 20
230    
231 gezelter 507 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
232     // real symmetric matrix. Square nxn matrix a; size of matrix in n;
233     // output eigenvalues in w; and output eigenvectors in v. Resulting
234     // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
235     // normalized.
236     template<typename Real, int Dim>
237     int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
238     SquareMatrix<Real, Dim>& v) {
239     const int n = Dim;
240     int i, j, k, iq, ip, numPos;
241     Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
242     Real bspace[4], zspace[4];
243     Real *b = bspace;
244     Real *z = zspace;
245 tim 123
246 gezelter 507 // only allocate memory if the matrix is large
247     if (n > 4) {
248     b = new Real[n];
249     z = new Real[n];
250     }
251 tim 123
252 gezelter 507 // initialize
253     for (ip=0; ip<n; ip++) {
254     for (iq=0; iq<n; iq++) {
255     v(ip, iq) = 0.0;
256     }
257     v(ip, ip) = 1.0;
258     }
259     for (ip=0; ip<n; ip++) {
260     b[ip] = w[ip] = a(ip, ip);
261     z[ip] = 0.0;
262     }
263 tim 76
264 gezelter 507 // begin rotation sequence
265     for (i=0; i<VTK_MAX_ROTATIONS; i++) {
266     sm = 0.0;
267     for (ip=0; ip<n-1; ip++) {
268     for (iq=ip+1; iq<n; iq++) {
269     sm += fabs(a(ip, iq));
270     }
271     }
272     if (sm == 0.0) {
273     break;
274     }
275 tim 76
276 gezelter 507 if (i < 3) { // first 3 sweeps
277     tresh = 0.2*sm/(n*n);
278     } else {
279     tresh = 0.0;
280     }
281 tim 76
282 gezelter 507 for (ip=0; ip<n-1; ip++) {
283     for (iq=ip+1; iq<n; iq++) {
284     g = 100.0*fabs(a(ip, iq));
285 tim 76
286 gezelter 507 // after 4 sweeps
287     if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
288     && (fabs(w[iq])+g) == fabs(w[iq])) {
289     a(ip, iq) = 0.0;
290     } else if (fabs(a(ip, iq)) > tresh) {
291     h = w[iq] - w[ip];
292     if ( (fabs(h)+g) == fabs(h)) {
293     t = (a(ip, iq)) / h;
294     } else {
295     theta = 0.5*h / (a(ip, iq));
296     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
297     if (theta < 0.0) {
298     t = -t;
299     }
300     }
301     c = 1.0 / sqrt(1+t*t);
302     s = t*c;
303     tau = s/(1.0+c);
304     h = t*a(ip, iq);
305     z[ip] -= h;
306     z[iq] += h;
307     w[ip] -= h;
308     w[iq] += h;
309     a(ip, iq)=0.0;
310 tim 76
311 gezelter 507 // ip already shifted left by 1 unit
312     for (j = 0;j <= ip-1;j++) {
313     VTK_ROTATE(a,j,ip,j,iq);
314     }
315     // ip and iq already shifted left by 1 unit
316     for (j = ip+1;j <= iq-1;j++) {
317     VTK_ROTATE(a,ip,j,j,iq);
318     }
319     // iq already shifted left by 1 unit
320     for (j=iq+1; j<n; j++) {
321     VTK_ROTATE(a,ip,j,iq,j);
322     }
323     for (j=0; j<n; j++) {
324     VTK_ROTATE(v,j,ip,j,iq);
325     }
326     }
327     }
328     }
329 tim 93
330 gezelter 507 for (ip=0; ip<n; ip++) {
331     b[ip] += z[ip];
332     w[ip] = b[ip];
333     z[ip] = 0.0;
334     }
335     }
336 tim 93
337 gezelter 507 //// this is NEVER called
338     if ( i >= VTK_MAX_ROTATIONS ) {
339     std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
340     return 0;
341     }
342 tim 76
343 gezelter 507 // sort eigenfunctions these changes do not affect accuracy
344     for (j=0; j<n-1; j++) { // boundary incorrect
345     k = j;
346     tmp = w[k];
347     for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
348     if (w[i] >= tmp) { // why exchage if same?
349     k = i;
350     tmp = w[k];
351     }
352     }
353     if (k != j) {
354     w[k] = w[j];
355     w[j] = tmp;
356     for (i=0; i<n; i++) {
357     tmp = v(i, j);
358     v(i, j) = v(i, k);
359     v(i, k) = tmp;
360     }
361     }
362     }
363     // insure eigenvector consistency (i.e., Jacobi can compute vectors that
364     // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
365     // reek havoc in hyperstreamline/other stuff. We will select the most
366     // positive eigenvector.
367     int ceil_half_n = (n >> 1) + (n & 1);
368     for (j=0; j<n; j++) {
369     for (numPos=0, i=0; i<n; i++) {
370     if ( v(i, j) >= 0.0 ) {
371     numPos++;
372     }
373     }
374     // if ( numPos < ceil(double(n)/double(2.0)) )
375     if ( numPos < ceil_half_n) {
376     for (i=0; i<n; i++) {
377     v(i, j) *= -1.0;
378     }
379     }
380     }
381 tim 76
382 gezelter 507 if (n > 4) {
383     delete [] b;
384     delete [] z;
385 tim 76 }
386 gezelter 507 return 1;
387     }
388 tim 76
389    
390     }
391 tim 123 #endif //MATH_SQUAREMATRIX_HPP
392 tim 76