ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SquareMatrix.hpp
Revision: 1874
Committed: Wed May 15 15:09:35 2013 UTC (11 years, 11 months ago) by gezelter
File size: 12393 byte(s)
Log Message:
Fixed a bunch of cppcheck warnings.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 70 *
4 gezelter 246 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1850 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 tim 70 */
42 gezelter 246
43 tim 70 /**
44     * @file SquareMatrix.hpp
45     * @author Teng Lin
46     * @date 10/11/2004
47     * @version 1.0
48     */
49 gezelter 507 #ifndef MATH_SQUAREMATRIX_HPP
50 tim 70 #define MATH_SQUAREMATRIX_HPP
51    
52 tim 74 #include "math/RectMatrix.hpp"
53 gezelter 956 #include "utils/NumericConstant.hpp"
54 tim 70
55 gezelter 1390 namespace OpenMD {
56 tim 70
57 gezelter 507 /**
58     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59     * @brief A square matrix class
60 gezelter 1808 * \tparam Real the element type
61     * \tparam Dim the dimension of the square matrix
62 gezelter 507 */
63     template<typename Real, int Dim>
64     class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65     public:
66     typedef Real ElemType;
67     typedef Real* ElemPoinerType;
68 tim 70
69 gezelter 507 /** default constructor */
70     SquareMatrix() {
71     for (unsigned int i = 0; i < Dim; i++)
72     for (unsigned int j = 0; j < Dim; j++)
73     this->data_[i][j] = 0.0;
74     }
75 tim 70
76 gezelter 507 /** Constructs and initializes every element of this matrix to a scalar */
77     SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78     }
79 tim 151
80 gezelter 507 /** Constructs and initializes from an array */
81     SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82     }
83 tim 151
84    
85 gezelter 507 /** copy constructor */
86     SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87     }
88 tim 70
89 gezelter 507 /** copy assignment operator */
90     SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91     RectMatrix<Real, Dim, Dim>::operator=(m);
92     return *this;
93     }
94 tim 137
95 gezelter 507 /** Retunrs an identity matrix*/
96 tim 74
97 gezelter 507 static SquareMatrix<Real, Dim> identity() {
98     SquareMatrix<Real, Dim> m;
99 tim 137
100 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
101     for (unsigned int j = 0; j < Dim; j++)
102     if (i == j)
103     m(i, j) = 1.0;
104     else
105     m(i, j) = 0.0;
106 tim 70
107 gezelter 507 return m;
108     }
109 tim 74
110 gezelter 507 /**
111     * Retunrs the inversion of this matrix.
112     * @todo need implementation
113     */
114     SquareMatrix<Real, Dim> inverse() {
115     SquareMatrix<Real, Dim> result;
116 tim 70
117 gezelter 507 return result;
118     }
119 tim 70
120 gezelter 507 /**
121     * Returns the determinant of this matrix.
122     * @todo need implementation
123     */
124     Real determinant() const {
125     Real det;
126     return det;
127     }
128 gezelter 1808
129 gezelter 507 /** Returns the trace of this matrix. */
130     Real trace() const {
131     Real tmp = 0;
132 tim 137
133 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
134     tmp += this->data_[i][i];
135 tim 70
136 gezelter 507 return tmp;
137     }
138 gezelter 1753
139     /**
140     * Returns the tensor contraction (double dot product) of two rank 2
141     * tensors (or Matrices)
142     * @param t1 first tensor
143     * @param t2 second tensor
144     * @return the tensor contraction (double dot product) of t1 and t2
145     */
146     Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) {
147     Real tmp;
148     tmp = 0;
149    
150     for (unsigned int i = 0; i < Dim; i++)
151     for (unsigned int j =0; j < Dim; j++)
152     tmp += t1[i][j] * t2[i][j];
153    
154     return tmp;
155     }
156 tim 70
157 gezelter 1794
158 gezelter 507 /** Tests if this matrix is symmetrix. */
159     bool isSymmetric() const {
160     for (unsigned int i = 0; i < Dim - 1; i++)
161     for (unsigned int j = i; j < Dim; j++)
162 gezelter 956 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
163 gezelter 507 return false;
164 tim 137
165 gezelter 507 return true;
166     }
167 tim 70
168 gezelter 507 /** Tests if this matrix is orthogonal. */
169     bool isOrthogonal() {
170     SquareMatrix<Real, Dim> tmp;
171 tim 70
172 gezelter 507 tmp = *this * transpose();
173 tim 70
174 gezelter 507 return tmp.isDiagonal();
175     }
176 tim 70
177 gezelter 507 /** Tests if this matrix is diagonal. */
178     bool isDiagonal() const {
179     for (unsigned int i = 0; i < Dim ; i++)
180     for (unsigned int j = 0; j < Dim; j++)
181 gezelter 956 if (i !=j && fabs(this->data_[i][j]) > epsilon)
182 gezelter 507 return false;
183 tim 137
184 gezelter 507 return true;
185     }
186 tim 137
187 gezelter 1760 /**
188     * Returns a column vector that contains the elements from the
189     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
190     * on.
191     */
192     Vector<Real, Dim> diagonals() const {
193     Vector<Real, Dim> result;
194     for (unsigned int i = 0; i < Dim; i++) {
195     result(i) = this->data_[i][i];
196     }
197     return result;
198     }
199    
200 gezelter 507 /** Tests if this matrix is the unit matrix. */
201     bool isUnitMatrix() const {
202     if (!isDiagonal())
203     return false;
204 tim 70
205 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
206 gezelter 956 if (fabs(this->data_[i][i] - 1) > epsilon)
207 gezelter 507 return false;
208 tim 137
209 gezelter 507 return true;
210     }
211 tim 70
212 gezelter 507 /** Return the transpose of this matrix */
213     SquareMatrix<Real, Dim> transpose() const{
214     SquareMatrix<Real, Dim> result;
215 tim 273
216 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
217     for (unsigned int j = 0; j < Dim; j++)
218     result(j, i) = this->data_[i][j];
219 tim 273
220 gezelter 507 return result;
221     }
222 tim 273
223 gezelter 507 /** @todo need implementation */
224     void diagonalize() {
225     //jacobi(m, eigenValues, ortMat);
226     }
227 tim 76
228 gezelter 507 /**
229     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
230     * real symmetric matrix
231     *
232     * @return true if success, otherwise return false
233     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
234     * overwritten
235 gezelter 1808 * @param d will contain the eigenvalues of the matrix On return of this function
236 gezelter 507 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
237     * normalized and mutually orthogonal.
238     */
239 tim 137
240 gezelter 507 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
241     SquareMatrix<Real, Dim>& v);
242     };//end SquareMatrix
243 tim 70
244 tim 76
245 gezelter 507 /*=========================================================================
246 tim 76
247 tim 123 Program: Visualization Toolkit
248     Module: $RCSfile: SquareMatrix.hpp,v $
249 tim 76
250 tim 123 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
251     All rights reserved.
252     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
253    
254 gezelter 507 This software is distributed WITHOUT ANY WARRANTY; without even
255     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
256     PURPOSE. See the above copyright notice for more information.
257 tim 123
258 gezelter 507 =========================================================================*/
259 tim 123
260 gezelter 507 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
261     a(k, l)=h+s*(g-h*tau)
262 tim 123
263     #define VTK_MAX_ROTATIONS 20
264    
265 gezelter 507 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
266     // real symmetric matrix. Square nxn matrix a; size of matrix in n;
267     // output eigenvalues in w; and output eigenvectors in v. Resulting
268     // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
269     // normalized.
270     template<typename Real, int Dim>
271     int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
272     SquareMatrix<Real, Dim>& v) {
273     const int n = Dim;
274     int i, j, k, iq, ip, numPos;
275     Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
276     Real bspace[4], zspace[4];
277     Real *b = bspace;
278     Real *z = zspace;
279 tim 123
280 gezelter 507 // only allocate memory if the matrix is large
281     if (n > 4) {
282     b = new Real[n];
283     z = new Real[n];
284     }
285 tim 123
286 gezelter 507 // initialize
287     for (ip=0; ip<n; ip++) {
288     for (iq=0; iq<n; iq++) {
289     v(ip, iq) = 0.0;
290     }
291     v(ip, ip) = 1.0;
292     }
293     for (ip=0; ip<n; ip++) {
294     b[ip] = w[ip] = a(ip, ip);
295     z[ip] = 0.0;
296     }
297 tim 76
298 gezelter 507 // begin rotation sequence
299     for (i=0; i<VTK_MAX_ROTATIONS; i++) {
300     sm = 0.0;
301     for (ip=0; ip<n-1; ip++) {
302     for (iq=ip+1; iq<n; iq++) {
303     sm += fabs(a(ip, iq));
304     }
305     }
306     if (sm == 0.0) {
307     break;
308     }
309 tim 76
310 gezelter 507 if (i < 3) { // first 3 sweeps
311     tresh = 0.2*sm/(n*n);
312     } else {
313     tresh = 0.0;
314     }
315 tim 76
316 gezelter 507 for (ip=0; ip<n-1; ip++) {
317     for (iq=ip+1; iq<n; iq++) {
318     g = 100.0*fabs(a(ip, iq));
319 tim 76
320 gezelter 507 // after 4 sweeps
321     if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
322     && (fabs(w[iq])+g) == fabs(w[iq])) {
323     a(ip, iq) = 0.0;
324     } else if (fabs(a(ip, iq)) > tresh) {
325     h = w[iq] - w[ip];
326     if ( (fabs(h)+g) == fabs(h)) {
327     t = (a(ip, iq)) / h;
328     } else {
329     theta = 0.5*h / (a(ip, iq));
330     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
331     if (theta < 0.0) {
332     t = -t;
333     }
334     }
335     c = 1.0 / sqrt(1+t*t);
336     s = t*c;
337     tau = s/(1.0+c);
338     h = t*a(ip, iq);
339     z[ip] -= h;
340     z[iq] += h;
341     w[ip] -= h;
342     w[iq] += h;
343     a(ip, iq)=0.0;
344 tim 76
345 gezelter 507 // ip already shifted left by 1 unit
346     for (j = 0;j <= ip-1;j++) {
347     VTK_ROTATE(a,j,ip,j,iq);
348     }
349     // ip and iq already shifted left by 1 unit
350     for (j = ip+1;j <= iq-1;j++) {
351     VTK_ROTATE(a,ip,j,j,iq);
352     }
353     // iq already shifted left by 1 unit
354     for (j=iq+1; j<n; j++) {
355     VTK_ROTATE(a,ip,j,iq,j);
356     }
357     for (j=0; j<n; j++) {
358     VTK_ROTATE(v,j,ip,j,iq);
359     }
360     }
361     }
362     }
363 tim 93
364 gezelter 507 for (ip=0; ip<n; ip++) {
365     b[ip] += z[ip];
366     w[ip] = b[ip];
367     z[ip] = 0.0;
368     }
369     }
370 tim 93
371 gezelter 507 //// this is NEVER called
372     if ( i >= VTK_MAX_ROTATIONS ) {
373     std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
374 gezelter 1874 if (n > 4) {
375     delete[] b;
376     delete[] z;
377     }
378 gezelter 507 return 0;
379     }
380 tim 76
381 gezelter 507 // sort eigenfunctions these changes do not affect accuracy
382     for (j=0; j<n-1; j++) { // boundary incorrect
383     k = j;
384     tmp = w[k];
385     for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
386     if (w[i] >= tmp) { // why exchage if same?
387     k = i;
388     tmp = w[k];
389     }
390     }
391     if (k != j) {
392     w[k] = w[j];
393     w[j] = tmp;
394     for (i=0; i<n; i++) {
395     tmp = v(i, j);
396     v(i, j) = v(i, k);
397     v(i, k) = tmp;
398     }
399     }
400     }
401     // insure eigenvector consistency (i.e., Jacobi can compute vectors that
402     // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
403     // reek havoc in hyperstreamline/other stuff. We will select the most
404     // positive eigenvector.
405     int ceil_half_n = (n >> 1) + (n & 1);
406     for (j=0; j<n; j++) {
407     for (numPos=0, i=0; i<n; i++) {
408     if ( v(i, j) >= 0.0 ) {
409     numPos++;
410     }
411     }
412 tim 963 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
413 gezelter 507 if ( numPos < ceil_half_n) {
414     for (i=0; i<n; i++) {
415     v(i, j) *= -1.0;
416     }
417     }
418     }
419 tim 76
420 gezelter 507 if (n > 4) {
421     delete [] b;
422     delete [] z;
423 tim 76 }
424 gezelter 507 return 1;
425     }
426 tim 76
427    
428 tim 963 typedef SquareMatrix<RealType, 6> Mat6x6d;
429 tim 76 }
430 tim 123 #endif //MATH_SQUAREMATRIX_HPP
431 tim 76

Properties

Name Value
svn:keywords Author Id Revision Date