1 |
tim |
70 |
/* |
2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
|
|
* |
4 |
|
|
* Contact: oopse@oopse.org |
5 |
|
|
* |
6 |
|
|
* This program is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
9 |
|
|
* of the License, or (at your option) any later version. |
10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
13 |
|
|
* with programs based on this work. |
14 |
|
|
* |
15 |
|
|
* This program is distributed in the hope that it will be useful, |
16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
|
|
* GNU Lesser General Public License for more details. |
19 |
|
|
* |
20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
21 |
|
|
* along with this program; if not, write to the Free Software |
22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
23 |
|
|
* |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
/** |
27 |
|
|
* @file SquareMatrix.hpp |
28 |
|
|
* @author Teng Lin |
29 |
|
|
* @date 10/11/2004 |
30 |
|
|
* @version 1.0 |
31 |
|
|
*/ |
32 |
|
|
#ifndef MATH_SQUAREMATRIX_HPP |
33 |
|
|
#define MATH_SQUAREMATRIX_HPP |
34 |
|
|
|
35 |
tim |
74 |
#include "math/RectMatrix.hpp" |
36 |
tim |
70 |
|
37 |
|
|
namespace oopse { |
38 |
|
|
|
39 |
|
|
/** |
40 |
|
|
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
41 |
|
|
* @brief A square matrix class |
42 |
|
|
* @template Real the element type |
43 |
|
|
* @template Dim the dimension of the square matrix |
44 |
|
|
*/ |
45 |
|
|
template<typename Real, int Dim> |
46 |
tim |
74 |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
47 |
tim |
70 |
public: |
48 |
|
|
|
49 |
|
|
/** default constructor */ |
50 |
|
|
SquareMatrix() { |
51 |
|
|
for (unsigned int i = 0; i < Dim; i++) |
52 |
|
|
for (unsigned int j = 0; j < Dim; j++) |
53 |
|
|
data_[i][j] = 0.0; |
54 |
|
|
} |
55 |
|
|
|
56 |
|
|
/** copy constructor */ |
57 |
tim |
74 |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
58 |
tim |
70 |
} |
59 |
|
|
|
60 |
|
|
/** copy assignment operator */ |
61 |
tim |
74 |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
62 |
|
|
RectMatrix<Real, Dim, Dim>::operator=(m); |
63 |
|
|
return *this; |
64 |
tim |
70 |
} |
65 |
tim |
74 |
|
66 |
|
|
/** Retunrs an identity matrix*/ |
67 |
tim |
70 |
|
68 |
tim |
74 |
static SquareMatrix<Real, Dim> identity() { |
69 |
|
|
SquareMatrix<Real, Dim> m; |
70 |
tim |
70 |
|
71 |
|
|
for (unsigned int i = 0; i < Dim; i++) |
72 |
tim |
74 |
for (unsigned int j = 0; j < Dim; j++) |
73 |
tim |
70 |
if (i == j) |
74 |
tim |
74 |
m(i, j) = 1.0; |
75 |
tim |
70 |
else |
76 |
tim |
74 |
m(i, j) = 0.0; |
77 |
|
|
|
78 |
|
|
return m; |
79 |
tim |
70 |
} |
80 |
|
|
|
81 |
tim |
101 |
/** |
82 |
|
|
* Retunrs the inversion of this matrix. |
83 |
|
|
* @todo |
84 |
|
|
*/ |
85 |
tim |
74 |
SquareMatrix<Real, Dim> inverse() { |
86 |
|
|
SquareMatrix<Real, Dim> result; |
87 |
|
|
|
88 |
|
|
return result; |
89 |
tim |
76 |
} |
90 |
tim |
70 |
|
91 |
tim |
101 |
/** |
92 |
|
|
* Returns the determinant of this matrix. |
93 |
|
|
* @todo |
94 |
|
|
*/ |
95 |
tim |
70 |
double determinant() const { |
96 |
tim |
74 |
double det; |
97 |
|
|
return det; |
98 |
tim |
70 |
} |
99 |
|
|
|
100 |
|
|
/** Returns the trace of this matrix. */ |
101 |
|
|
double trace() const { |
102 |
|
|
double tmp = 0; |
103 |
|
|
|
104 |
|
|
for (unsigned int i = 0; i < Dim ; i++) |
105 |
|
|
tmp += data_[i][i]; |
106 |
|
|
|
107 |
|
|
return tmp; |
108 |
|
|
} |
109 |
|
|
|
110 |
|
|
/** Tests if this matrix is symmetrix. */ |
111 |
|
|
bool isSymmetric() const { |
112 |
|
|
for (unsigned int i = 0; i < Dim - 1; i++) |
113 |
|
|
for (unsigned int j = i; j < Dim; j++) |
114 |
tim |
74 |
if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) |
115 |
tim |
70 |
return false; |
116 |
|
|
|
117 |
|
|
return true; |
118 |
|
|
} |
119 |
|
|
|
120 |
tim |
76 |
/** Tests if this matrix is orthogonal. */ |
121 |
tim |
74 |
bool isOrthogonal() { |
122 |
|
|
SquareMatrix<Real, Dim> tmp; |
123 |
tim |
70 |
|
124 |
tim |
74 |
tmp = *this * transpose(); |
125 |
tim |
70 |
|
126 |
tim |
76 |
return tmp.isDiagonal(); |
127 |
tim |
70 |
} |
128 |
|
|
|
129 |
|
|
/** Tests if this matrix is diagonal. */ |
130 |
|
|
bool isDiagonal() const { |
131 |
|
|
for (unsigned int i = 0; i < Dim ; i++) |
132 |
|
|
for (unsigned int j = 0; j < Dim; j++) |
133 |
tim |
74 |
if (i !=j && fabs(data_[i][j]) > oopse::epsilon) |
134 |
tim |
70 |
return false; |
135 |
|
|
|
136 |
|
|
return true; |
137 |
|
|
} |
138 |
|
|
|
139 |
|
|
/** Tests if this matrix is the unit matrix. */ |
140 |
|
|
bool isUnitMatrix() const { |
141 |
|
|
if (!isDiagonal()) |
142 |
|
|
return false; |
143 |
|
|
|
144 |
|
|
for (unsigned int i = 0; i < Dim ; i++) |
145 |
tim |
74 |
if (fabs(data_[i][i] - 1) > oopse::epsilon) |
146 |
tim |
70 |
return false; |
147 |
|
|
|
148 |
|
|
return true; |
149 |
tim |
74 |
} |
150 |
tim |
70 |
|
151 |
tim |
101 |
/** @todo need implement */ |
152 |
tim |
76 |
void diagonalize() { |
153 |
tim |
101 |
//jacobi(m, eigenValues, ortMat); |
154 |
tim |
76 |
} |
155 |
|
|
|
156 |
|
|
/** |
157 |
|
|
* Finds the eigenvalues and eigenvectors of a symmetric matrix |
158 |
|
|
* @param eigenvals a reference to a vector3 where the |
159 |
|
|
* eigenvalues will be stored. The eigenvalues are ordered so |
160 |
|
|
* that eigenvals[0] <= eigenvals[1] <= eigenvals[2]. |
161 |
|
|
* @return an orthogonal matrix whose ith column is an |
162 |
|
|
* eigenvector for the eigenvalue eigenvals[i] |
163 |
|
|
*/ |
164 |
|
|
SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) { |
165 |
|
|
SquareMatrix<Real, Dim> ortMat; |
166 |
|
|
|
167 |
|
|
if ( !isSymmetric()){ |
168 |
|
|
throw(); |
169 |
|
|
} |
170 |
|
|
|
171 |
|
|
SquareMatrix<Real, Dim> m(*this); |
172 |
|
|
jacobi(m, eigenValues, ortMat); |
173 |
|
|
|
174 |
|
|
return ortMat; |
175 |
|
|
} |
176 |
|
|
/** |
177 |
|
|
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
178 |
|
|
* real symmetric matrix |
179 |
|
|
* |
180 |
|
|
* @return true if success, otherwise return false |
181 |
|
|
* @param a source matrix |
182 |
|
|
* @param w output eigenvalues |
183 |
|
|
* @param v output eigenvectors |
184 |
|
|
*/ |
185 |
tim |
83 |
bool jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
186 |
tim |
76 |
SquareMatrix<Real, Dim>& v); |
187 |
tim |
70 |
};//end SquareMatrix |
188 |
|
|
|
189 |
tim |
76 |
|
190 |
|
|
#define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau) |
191 |
|
|
#define MAX_ROTATIONS 60 |
192 |
|
|
|
193 |
tim |
83 |
template<typename Real, int Dim> |
194 |
|
|
bool SquareMatrix<Real, Dim>::jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
195 |
|
|
SquareMatrix<Real, Dim>& v) { |
196 |
tim |
76 |
const int N = Dim; |
197 |
|
|
int i, j, k, iq, ip; |
198 |
|
|
double tresh, theta, tau, t, sm, s, h, g, c; |
199 |
|
|
double tmp; |
200 |
|
|
Vector<Real, Dim> b, z; |
201 |
|
|
|
202 |
|
|
// initialize |
203 |
tim |
93 |
for (ip=0; ip<N; ip++) { |
204 |
|
|
for (iq=0; iq<N; iq++) |
205 |
|
|
v(ip, iq) = 0.0; |
206 |
|
|
v(ip, ip) = 1.0; |
207 |
tim |
76 |
} |
208 |
tim |
93 |
|
209 |
|
|
for (ip=0; ip<N; ip++) { |
210 |
|
|
b(ip) = w(ip) = a(ip, ip); |
211 |
|
|
z(ip) = 0.0; |
212 |
tim |
76 |
} |
213 |
|
|
|
214 |
|
|
// begin rotation sequence |
215 |
tim |
93 |
for (i=0; i<MAX_ROTATIONS; i++) { |
216 |
|
|
sm = 0.0; |
217 |
|
|
for (ip=0; ip<2; ip++) { |
218 |
|
|
for (iq=ip+1; iq<N; iq++) |
219 |
|
|
sm += fabs(a(ip, iq)); |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
if (sm == 0.0) |
223 |
|
|
break; |
224 |
tim |
76 |
|
225 |
tim |
93 |
if (i < 4) |
226 |
|
|
tresh = 0.2*sm/(9); |
227 |
|
|
else |
228 |
|
|
tresh = 0.0; |
229 |
tim |
76 |
|
230 |
tim |
93 |
for (ip=0; ip<2; ip++) { |
231 |
|
|
for (iq=ip+1; iq<N; iq++) { |
232 |
|
|
g = 100.0*fabs(a(ip, iq)); |
233 |
|
|
if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip)) |
234 |
|
|
&& (fabs(w(iq))+g) == fabs(w(iq))) { |
235 |
|
|
a(ip, iq) = 0.0; |
236 |
|
|
} else if (fabs(a(ip, iq)) > tresh) { |
237 |
|
|
h = w(iq) - w(ip); |
238 |
|
|
if ( (fabs(h)+g) == fabs(h)) { |
239 |
|
|
t = (a(ip, iq)) / h; |
240 |
|
|
} else { |
241 |
|
|
theta = 0.5*h / (a(ip, iq)); |
242 |
|
|
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
243 |
tim |
76 |
|
244 |
tim |
93 |
if (theta < 0.0) |
245 |
|
|
t = -t; |
246 |
|
|
} |
247 |
tim |
76 |
|
248 |
tim |
93 |
c = 1.0 / sqrt(1+t*t); |
249 |
|
|
s = t*c; |
250 |
|
|
tau = s/(1.0+c); |
251 |
|
|
h = t*a(ip, iq); |
252 |
|
|
z(ip) -= h; |
253 |
|
|
z(iq) += h; |
254 |
|
|
w(ip) -= h; |
255 |
|
|
w(iq) += h; |
256 |
|
|
a(ip, iq)=0.0; |
257 |
|
|
|
258 |
|
|
for (j=0;j<ip-1;j++) |
259 |
|
|
ROT(a,j,ip,j,iq); |
260 |
|
|
|
261 |
|
|
for (j=ip+1;j<iq-1;j++) |
262 |
|
|
ROT(a,ip,j,j,iq); |
263 |
|
|
|
264 |
|
|
for (j=iq+1; j<N; j++) |
265 |
|
|
ROT(a,ip,j,iq,j); |
266 |
tim |
101 |
|
267 |
tim |
93 |
for (j=0; j<N; j++) |
268 |
|
|
ROT(v,j,ip,j,iq); |
269 |
|
|
} |
270 |
|
|
} |
271 |
|
|
}//for (ip=0; ip<2; ip++) |
272 |
|
|
|
273 |
|
|
for (ip=0; ip<N; ip++) { |
274 |
|
|
b(ip) += z(ip); |
275 |
|
|
w(ip) = b(ip); |
276 |
|
|
z(ip) = 0.0; |
277 |
|
|
} |
278 |
|
|
|
279 |
|
|
} // end for (i=0; i<MAX_ROTATIONS; i++) |
280 |
|
|
|
281 |
tim |
76 |
if ( i >= MAX_ROTATIONS ) |
282 |
tim |
93 |
return false; |
283 |
tim |
76 |
|
284 |
|
|
// sort eigenfunctions |
285 |
tim |
93 |
for (j=0; j<N; j++) { |
286 |
|
|
k = j; |
287 |
|
|
tmp = w(k); |
288 |
|
|
for (i=j; i<N; i++) { |
289 |
|
|
if (w(i) >= tmp) { |
290 |
|
|
k = i; |
291 |
|
|
tmp = w(k); |
292 |
|
|
} |
293 |
|
|
} |
294 |
|
|
|
295 |
|
|
if (k != j) { |
296 |
|
|
w(k) = w(j); |
297 |
|
|
w(j) = tmp; |
298 |
|
|
for (i=0; i<N; i++) { |
299 |
|
|
tmp = v(i, j); |
300 |
|
|
v(i, j) = v(i, k); |
301 |
|
|
v(i, k) = tmp; |
302 |
|
|
} |
303 |
|
|
} |
304 |
tim |
76 |
} |
305 |
|
|
|
306 |
|
|
// insure eigenvector consistency (i.e., Jacobi can compute |
307 |
|
|
// vectors that are negative of one another (.707,.707,0) and |
308 |
|
|
// (-.707,-.707,0). This can reek havoc in |
309 |
|
|
// hyperstreamline/other stuff. We will select the most |
310 |
|
|
// positive eigenvector. |
311 |
|
|
int numPos; |
312 |
tim |
93 |
for (j=0; j<N; j++) { |
313 |
|
|
for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++; |
314 |
|
|
if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0; |
315 |
tim |
76 |
} |
316 |
|
|
|
317 |
|
|
return true; |
318 |
tim |
70 |
} |
319 |
tim |
76 |
|
320 |
|
|
#undef ROT |
321 |
|
|
#undef MAX_ROTATIONS |
322 |
|
|
|
323 |
|
|
} |
324 |
|
|
|
325 |
tim |
70 |
#endif //MATH_SQUAREMATRIX_HPP |