6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <stdio.h> |
43 |
+ |
#include <cmath> |
44 |
|
#include <limits> |
45 |
|
#include "math/SphericalHarmonic.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
|
|
48 |
< |
using namespace oopse; |
48 |
> |
using namespace OpenMD; |
49 |
|
|
50 |
|
SphericalHarmonic::SphericalHarmonic() { |
51 |
|
} |
53 |
|
ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
54 |
|
|
55 |
|
RealType p; |
55 |
– |
ComplexType phase; |
56 |
– |
ComplexType I(0.0, 1.0); |
56 |
|
|
57 |
|
// associated Legendre polynomial |
58 |
< |
p = Legendre(L, M, costheta); |
59 |
< |
|
60 |
< |
phase = exp(I * (ComplexType)M * (ComplexType)phi); |
61 |
< |
|
63 |
< |
return coefficient * phase * (ComplexType)p; |
58 |
> |
p = Ptilde(L, M, costheta); |
59 |
> |
ComplexType phase(0.0, (RealType)M * phi); |
60 |
> |
|
61 |
> |
return exp(phase) * (ComplexType)p; |
62 |
|
|
63 |
|
} |
66 |
– |
|
67 |
– |
//---------------------------------------------------------------------------// |
64 |
|
// |
65 |
< |
// RealType LegendreP (int l, int m, RealType x); |
65 |
> |
// Routine to calculate the associated Legendre polynomials for m>=0 |
66 |
|
// |
67 |
< |
// Computes the value of the associated Legendre polynomial P_lm (x) |
68 |
< |
// of order l at a given point. |
69 |
< |
// |
70 |
< |
// Input: |
71 |
< |
// l = degree of the polynomial >= 0 |
72 |
< |
// m = parameter satisfying 0 <= m <= l, |
73 |
< |
// x = point in which the computation is performed, range -1 <= x <= 1. |
74 |
< |
// Returns: |
79 |
< |
// value of the polynomial in x |
80 |
< |
// |
81 |
< |
//---------------------------------------------------------------------------// |
82 |
< |
RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) { |
83 |
< |
// check parameters |
84 |
< |
if (m < 0 || m > l || fabs(x) > 1.0) { |
85 |
< |
printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
67 |
> |
RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { |
68 |
> |
|
69 |
> |
RealType temp1, temp2, temp3, temp4, result; |
70 |
> |
RealType temp5; |
71 |
> |
int i, ll; |
72 |
> |
|
73 |
> |
if (fabs(x) > 1.0) { |
74 |
> |
printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); |
75 |
|
return std::numeric_limits <RealType>:: quiet_NaN(); |
76 |
|
} |
77 |
|
|
78 |
< |
RealType pmm = 1.0; |
79 |
< |
if (m > 0) { |
80 |
< |
RealType h = sqrt((1.0-x)*(1.0+x)), |
92 |
< |
f = 1.0; |
93 |
< |
for (int i = 1; i <= m; i++) { |
94 |
< |
pmm *= -f * h; |
95 |
< |
f += 2.0; |
96 |
< |
} |
78 |
> |
if (m>l) { |
79 |
> |
printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); |
80 |
> |
return std::numeric_limits <RealType>:: quiet_NaN(); |
81 |
|
} |
82 |
< |
if (l == m) |
83 |
< |
return pmm; |
84 |
< |
else { |
85 |
< |
RealType pmmp1 = x * (2 * m + 1) * pmm; |
86 |
< |
if (l == (m+1)) |
87 |
< |
return pmmp1; |
88 |
< |
else { |
89 |
< |
RealType pll = 0.0; |
90 |
< |
for (int ll = m+2; ll <= l; ll++) { |
91 |
< |
pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
92 |
< |
pmm = pmmp1; |
93 |
< |
pmmp1 = pll; |
82 |
> |
|
83 |
> |
if (m<0) { |
84 |
> |
printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); |
85 |
> |
return std::numeric_limits <RealType>:: quiet_NaN(); |
86 |
> |
} else { |
87 |
> |
temp3=1.0; |
88 |
> |
|
89 |
> |
if (m>0) { |
90 |
> |
temp1=sqrt(1.0-pow(x,2)); |
91 |
> |
temp5 = 1.0; |
92 |
> |
for (i=1;i<=m;++i) { |
93 |
> |
temp3 *= -temp5*temp1; |
94 |
> |
temp5 += 2.0; |
95 |
|
} |
111 |
– |
return pll; |
96 |
|
} |
97 |
+ |
if (l==m) { |
98 |
+ |
result = temp3; |
99 |
+ |
} else { |
100 |
+ |
temp4=x*(2.*m+1.)*temp3; |
101 |
+ |
if (l==(m+1)) { |
102 |
+ |
result = temp4; |
103 |
+ |
} else { |
104 |
+ |
for (ll=(m+2);ll<=l;++ll) { |
105 |
+ |
temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); |
106 |
+ |
temp3=temp4; |
107 |
+ |
temp4=temp2; |
108 |
+ |
} |
109 |
+ |
result = temp2; |
110 |
+ |
} |
111 |
+ |
} |
112 |
|
} |
113 |
+ |
return result; |
114 |
|
} |
115 |
|
|
116 |
+ |
|
117 |
|
// |
118 |
|
// Routine to calculate the associated Legendre polynomials for all m... |
119 |
|
// |
125 |
|
} else if (m >= 0) { |
126 |
|
result = LegendreP(l,m,x); |
127 |
|
} else { |
128 |
+ |
//result = mpow(-m)*LegendreP(l,-m,x); |
129 |
|
result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); |
130 |
|
} |
131 |
|
result *=mpow(m); |
132 |
|
return result; |
133 |
|
} |
134 |
|
// |
135 |
+ |
// Routine to calculate the normalized associated Legendre polynomials... |
136 |
+ |
// |
137 |
+ |
RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ |
138 |
+ |
|
139 |
+ |
RealType result; |
140 |
+ |
if (m>l || m<-l) { |
141 |
+ |
result = 0.; |
142 |
+ |
} else { |
143 |
+ |
RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); |
144 |
+ |
result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); |
145 |
+ |
} |
146 |
+ |
return result; |
147 |
+ |
} |
148 |
+ |
// |
149 |
|
// mpow returns (-1)**m |
150 |
|
// |
151 |
|
RealType SphericalHarmonic::mpow(int m) { |