ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/SphericalHarmonic.cpp
(Generate patch)

Comparing:
trunk/src/math/SphericalHarmonic.cpp (file contents), Revision 1042 by gezelter, Wed Sep 20 22:16:23 2006 UTC vs.
branches/development/src/math/SphericalHarmonic.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
44 + #include <cmath>
45   #include <limits>
46   #include "math/SphericalHarmonic.hpp"
47   #include "utils/simError.h"
48  
49 < using namespace oopse;
49 > using namespace OpenMD;
50  
51   SphericalHarmonic::SphericalHarmonic() {
52   }
# Line 52 | Line 54 | ComplexType SphericalHarmonic::getValueAt(RealType cos
54   ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) {
55    
56    RealType p;
55  ComplexType phase;
56  ComplexType I(0.0, 1.0);
57    
58    // associated Legendre polynomial
59 <  p = Legendre(L, M, costheta);
60 <
61 <  phase = exp(I * (ComplexType)M * (ComplexType)phi);
62 <    
63 <  return coefficient * phase * (ComplexType)p;
59 >  p = Ptilde(L, M, costheta);
60 >  ComplexType phase(0.0, (RealType)M * phi);    
61 >
62 >  return exp(phase) * (ComplexType)p;
63    
64   }
66
67 //---------------------------------------------------------------------------//
65   //
66 < // RealType LegendreP (int l, int m, RealType x);
66 > // Routine to calculate the associated Legendre polynomials for m>=0
67   //
68 < // Computes the value of the associated Legendre polynomial P_lm (x)
69 < // of order l at a given point.
70 < //
71 < // Input:
72 < //   l  = degree of the polynomial  >= 0
73 < //   m  = parameter satisfying 0 <= m <= l,
74 < //   x  = point in which the computation is performed, range -1 <= x <= 1.
75 < // Returns:
79 < //   value of the polynomial in x
80 < //
81 < //---------------------------------------------------------------------------//
82 < RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) {
83 <  // check parameters
84 <  if (m < 0 || m > l || fabs(x) > 1.0) {
85 <    printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x);
68 > RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) {
69 >
70 >  RealType temp1, temp2, temp3, temp4, result;
71 >  RealType temp5;
72 >  int i, ll;
73 >  
74 >  if (fabs(x) > 1.0) {
75 >    printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x);
76      return std::numeric_limits <RealType>:: quiet_NaN();
77    }
78    
79 <  RealType pmm = 1.0;
80 <  if (m > 0) {
81 <    RealType h = sqrt((1.0-x)*(1.0+x)),
92 <      f = 1.0;
93 <    for (int i = 1; i <= m; i++) {
94 <      pmm *= -f * h;
95 <      f += 2.0;
96 <    }
79 >  if (m>l) {
80 >    printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x);
81 >    return std::numeric_limits <RealType>:: quiet_NaN();
82    }
83 <  if (l == m)
84 <    return pmm;
85 <  else {
86 <    RealType pmmp1 = x * (2 * m + 1) * pmm;
87 <    if (l == (m+1))
88 <      return pmmp1;
89 <    else {
90 <      RealType pll = 0.0;
91 <      for (int ll = m+2; ll <= l; ll++) {
92 <        pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m);
93 <        pmm = pmmp1;
94 <        pmmp1 = pll;
83 >    
84 >  if (m<0) {
85 >    printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x);
86 >    return std::numeric_limits <RealType>:: quiet_NaN();
87 >  } else {
88 >    temp3=1.0;
89 >    
90 >    if (m>0) {
91 >      temp1=sqrt(1.0-pow(x,2));
92 >      temp5 = 1.0;
93 >      for (i=1;i<=m;++i) {
94 >        temp3 *= -temp5*temp1;
95 >        temp5 += 2.0;
96        }
111      return pll;
97      }
98 +    if (l==m) {
99 +      result = temp3;
100 +    } else {
101 +      temp4=x*(2.*m+1.)*temp3;
102 +      if (l==(m+1)) {
103 +        result = temp4;
104 +      } else {
105 +        for (ll=(m+2);ll<=l;++ll) {
106 +          temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m);
107 +          temp3=temp4;
108 +          temp4=temp2;
109 +        }
110 +        result = temp2;
111 +      }
112 +    }
113    }
114 +  return result;
115   }
116  
117 +
118   //
119   // Routine to calculate the associated Legendre polynomials for all m...
120   //
# Line 124 | Line 126 | RealType SphericalHarmonic::Legendre(int l, int m, Rea
126    } else if (m >= 0) {
127      result = LegendreP(l,m,x);
128    } else {
129 +    //result = mpow(-m)*LegendreP(l,-m,x);
130      result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x);
131    }
132    result *=mpow(m);
133    return result;
134   }
135   //
136 + // Routine to calculate the normalized associated Legendre polynomials...
137 + //
138 + RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){
139 +
140 +  RealType result;
141 +  if (m>l || m<-l) {
142 +    result = 0.;
143 +  } else {
144 +    RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m);
145 +    result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI);
146 +  }
147 +  return result;
148 + }
149 + //
150   // mpow returns (-1)**m
151   //
152   RealType SphericalHarmonic::mpow(int m) {

Comparing:
trunk/src/math/SphericalHarmonic.cpp (property svn:keywords), Revision 1042 by gezelter, Wed Sep 20 22:16:23 2006 UTC vs.
branches/development/src/math/SphericalHarmonic.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines