| 221 |
|
/** |
| 222 |
|
* Tests if this matrix is identical to matrix m |
| 223 |
|
* @return true if this matrix is equal to the matrix m, return false otherwise |
| 224 |
< |
* @m matrix to be compared |
| 224 |
> |
* @param m matrix to be compared |
| 225 |
|
* |
| 226 |
|
* @todo replace operator == by template function equal |
| 227 |
|
*/ |
| 237 |
|
/** |
| 238 |
|
* Tests if this matrix is not equal to matrix m |
| 239 |
|
* @return true if this matrix is not equal to the matrix m, return false otherwise |
| 240 |
< |
* @m matrix to be compared |
| 240 |
> |
* @param m matrix to be compared |
| 241 |
|
*/ |
| 242 |
|
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
| 243 |
|
return !(*this == m); |
| 564 |
|
* CCP5 Newsletter No 46., pp. 18-30. |
| 565 |
|
* |
| 566 |
|
* Equation 21 defines: |
| 567 |
< |
* V_alpha = \sum_\beta [ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
| 568 |
< |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} ] |
| 569 |
< |
* where \alpha+1 and \alpha+2 are regarded as cyclic permuations of the |
| 570 |
< |
* matrix indices (i.e. for a 3x3 matrix, when \alpha = 2, \alpha + 1 = 3, |
| 571 |
< |
* and \alpha + 2 = 1). |
| 567 |
> |
* \f[ |
| 568 |
> |
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
| 569 |
> |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
| 570 |
> |
* \f] |
| 571 |
> |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
| 572 |
> |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
| 573 |
> |
* and \f[\alpha + 2 = 1 \f] ). |
| 574 |
|
* |
| 575 |
|
* @param t1 first matrix |
| 576 |
|
* @param t2 second matrix |