568 |
|
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
569 |
|
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
570 |
|
* \f] |
571 |
< |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
572 |
< |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
573 |
< |
* and \f[\alpha + 2 = 1 \f] ). |
571 |
> |
|
572 |
> |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic |
573 |
> |
* permuations of the matrix indices (i.e. for a 3x3 matrix, when |
574 |
> |
* \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). |
575 |
|
* |
576 |
|
* @param t1 first matrix |
577 |
|
* @param t2 second matrix |
578 |
|
* @return the cross product (vector product) of t1 and t2 |
579 |
|
*/ |
580 |
|
template<typename Real, unsigned int Row, unsigned int Col> |
581 |
< |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) { |
581 |
> |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, |
582 |
> |
const RectMatrix<Real, Row, Col>& t2 ) { |
583 |
|
Vector<Real, Row> result; |
584 |
|
unsigned int i1; |
585 |
|
unsigned int i2; |
587 |
|
for (unsigned int i = 0; i < Row; i++) { |
588 |
|
i1 = (i+1)%Row; |
589 |
|
i2 = (i+2)%Row; |
590 |
< |
|
591 |
< |
for (unsigned int j =0; j < Col; j++) { |
590 |
< |
result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
590 |
> |
for (unsigned int j = 0; j < Col; j++) { |
591 |
> |
result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
592 |
|
} |
593 |
< |
} |
593 |
< |
|
593 |
> |
} |
594 |
|
return result; |
595 |
|
} |
596 |
|
|