ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/RectMatrix.hpp
(Generate patch)

Comparing branches/development/src/math/RectMatrix.hpp (file contents):
Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC vs.
Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 221 | Line 221 | namespace OpenMD {
221      /**
222       * Tests if this matrix is identical to matrix m
223       * @return true if this matrix is equal to the matrix m, return false otherwise
224 <     * @m matrix to be compared
224 >     * @param m matrix to be compared
225       *
226       * @todo replace operator == by template function equal
227       */
# Line 237 | Line 237 | namespace OpenMD {
237      /**
238       * Tests if this matrix is not equal to matrix m
239       * @return true if this matrix is not equal to the matrix m, return false otherwise
240 <     * @m matrix to be compared
240 >     * @param m matrix to be compared
241       */
242      bool operator !=(const RectMatrix<Real, Row, Col>& m) {
243        return !(*this == m);
# Line 507 | Line 507 | namespace OpenMD {
507    }
508      
509    /**
510 <   * Return the multiplication of  a matrix and a vector  (m * v).
510 >   * Returns the multiplication of  a matrix and a vector  (m * v).
511     * @return the multiplication of a matrix and a vector
512     * @param m the matrix
513     * @param v the vector
# Line 524 | Line 524 | namespace OpenMD {
524    }
525  
526    /**
527 +   * Returns the multiplication of a vector transpose and a matrix  (v^T * m).
528 +   * @return the multiplication of a vector transpose and a matrix
529 +   * @param v the vector
530 +   * @param m the matrix
531 +   */
532 +  template<typename Real, unsigned int Row, unsigned int Col>
533 +  inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) {
534 +    Vector<Real, Row> result;
535 +    
536 +    for (unsigned int i = 0; i < Col ; i++)
537 +      for (unsigned int j = 0; j < Row ; j++)            
538 +        result[i] += v[j] * m(j, i);
539 +            
540 +    return result;                                                                
541 +  }
542 +
543 +  /**
544     * Return the scalar division of matrix   (m / s).
545     * @return the scalar division of matrix  
546     * @param m the matrix
# Line 538 | Line 555 | namespace OpenMD {
555      return result;
556    }    
557  
558 +  
559    /**
560 +   * Returns the vector (cross) product of two matrices.  This
561 +   * operation is defined in:
562 +   *
563 +   * W. Smith, "Point Multipoles in the Ewald Summation (Revisited),"
564 +   * CCP5 Newsletter No 46., pp. 18-30.
565 +   *
566 +   * Equation 21 defines:
567 +   * \f[
568 +   * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta}
569 +                           -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right]
570 +   * \f]
571 +   * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the
572 +   * matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f],
573 +   * and \f[\alpha + 2 = 1 \f] ).
574 +   *
575 +   * @param t1 first matrix
576 +   * @param t2 second matrix
577 +   * @return the cross product (vector product) of t1 and t2
578 +   */
579 +  template<typename Real, unsigned int Row, unsigned int Col>
580 +  inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) {
581 +    Vector<Real, Row> result;
582 +    unsigned int i1;
583 +    unsigned int i2;
584 +    
585 +    for (unsigned int i = 0; i < Row; i++) {
586 +      i1 = (i+1)%Row;
587 +      i2 = (i+2)%Row;
588 +      
589 +      for (unsigned int j =0; j < Col; j++) {        
590 +        result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j);
591 +      }
592 +    }
593 +    
594 +    return result;
595 +  }
596 +  
597 +  
598 +  /**
599     * Write to an output stream
600     */
601    template<typename Real,  unsigned int Row, unsigned int Col>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines