221 |
|
/** |
222 |
|
* Tests if this matrix is identical to matrix m |
223 |
|
* @return true if this matrix is equal to the matrix m, return false otherwise |
224 |
< |
* @m matrix to be compared |
224 |
> |
* @param m matrix to be compared |
225 |
|
* |
226 |
|
* @todo replace operator == by template function equal |
227 |
|
*/ |
237 |
|
/** |
238 |
|
* Tests if this matrix is not equal to matrix m |
239 |
|
* @return true if this matrix is not equal to the matrix m, return false otherwise |
240 |
< |
* @m matrix to be compared |
240 |
> |
* @param m matrix to be compared |
241 |
|
*/ |
242 |
|
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
243 |
|
return !(*this == m); |
507 |
|
} |
508 |
|
|
509 |
|
/** |
510 |
< |
* Return the multiplication of a matrix and a vector (m * v). |
510 |
> |
* Returns the multiplication of a matrix and a vector (m * v). |
511 |
|
* @return the multiplication of a matrix and a vector |
512 |
|
* @param m the matrix |
513 |
|
* @param v the vector |
524 |
|
} |
525 |
|
|
526 |
|
/** |
527 |
+ |
* Returns the multiplication of a vector transpose and a matrix (v^T * m). |
528 |
+ |
* @return the multiplication of a vector transpose and a matrix |
529 |
+ |
* @param v the vector |
530 |
+ |
* @param m the matrix |
531 |
+ |
*/ |
532 |
+ |
template<typename Real, unsigned int Row, unsigned int Col> |
533 |
+ |
inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { |
534 |
+ |
Vector<Real, Row> result; |
535 |
+ |
|
536 |
+ |
for (unsigned int i = 0; i < Col ; i++) |
537 |
+ |
for (unsigned int j = 0; j < Row ; j++) |
538 |
+ |
result[i] += v[j] * m(j, i); |
539 |
+ |
|
540 |
+ |
return result; |
541 |
+ |
} |
542 |
+ |
|
543 |
+ |
/** |
544 |
|
* Return the scalar division of matrix (m / s). |
545 |
|
* @return the scalar division of matrix |
546 |
|
* @param m the matrix |
555 |
|
return result; |
556 |
|
} |
557 |
|
|
558 |
+ |
|
559 |
|
/** |
560 |
+ |
* Returns the vector (cross) product of two matrices. This |
561 |
+ |
* operation is defined in: |
562 |
+ |
* |
563 |
+ |
* W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," |
564 |
+ |
* CCP5 Newsletter No 46., pp. 18-30. |
565 |
+ |
* |
566 |
+ |
* Equation 21 defines: |
567 |
+ |
* \f[ |
568 |
+ |
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
569 |
+ |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
570 |
+ |
* \f] |
571 |
+ |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
572 |
+ |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
573 |
+ |
* and \f[\alpha + 2 = 1 \f] ). |
574 |
+ |
* |
575 |
+ |
* @param t1 first matrix |
576 |
+ |
* @param t2 second matrix |
577 |
+ |
* @return the cross product (vector product) of t1 and t2 |
578 |
+ |
*/ |
579 |
+ |
template<typename Real, unsigned int Row, unsigned int Col> |
580 |
+ |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) { |
581 |
+ |
Vector<Real, Row> result; |
582 |
+ |
unsigned int i1; |
583 |
+ |
unsigned int i2; |
584 |
+ |
|
585 |
+ |
for (unsigned int i = 0; i < Row; i++) { |
586 |
+ |
i1 = (i+1)%Row; |
587 |
+ |
i2 = (i+2)%Row; |
588 |
+ |
|
589 |
+ |
for (unsigned int j =0; j < Col; j++) { |
590 |
+ |
result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
591 |
+ |
} |
592 |
+ |
} |
593 |
+ |
|
594 |
+ |
return result; |
595 |
+ |
} |
596 |
+ |
|
597 |
+ |
|
598 |
+ |
/** |
599 |
|
* Write to an output stream |
600 |
|
*/ |
601 |
|
template<typename Real, unsigned int Row, unsigned int Col> |