221 |
|
/** |
222 |
|
* Tests if this matrix is identical to matrix m |
223 |
|
* @return true if this matrix is equal to the matrix m, return false otherwise |
224 |
< |
* @m matrix to be compared |
224 |
> |
* @param m matrix to be compared |
225 |
|
* |
226 |
|
* @todo replace operator == by template function equal |
227 |
|
*/ |
237 |
|
/** |
238 |
|
* Tests if this matrix is not equal to matrix m |
239 |
|
* @return true if this matrix is not equal to the matrix m, return false otherwise |
240 |
< |
* @m matrix to be compared |
240 |
> |
* @param m matrix to be compared |
241 |
|
*/ |
242 |
|
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
243 |
|
return !(*this == m); |
564 |
|
* CCP5 Newsletter No 46., pp. 18-30. |
565 |
|
* |
566 |
|
* Equation 21 defines: |
567 |
< |
* V_alpha = \sum_\beta [ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
568 |
< |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} ] |
569 |
< |
* where \alpha+1 and \alpha+2 are regarded as cyclic permuations of the |
570 |
< |
* matrix indices (i.e. for a 3x3 matrix, when \alpha = 2, \alpha + 1 = 3, |
571 |
< |
* and \alpha + 2 = 1). |
567 |
> |
* \f[ |
568 |
> |
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
569 |
> |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
570 |
> |
* \f] |
571 |
> |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
572 |
> |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
573 |
> |
* and \f[\alpha + 2 = 1 \f] ). |
574 |
|
* |
575 |
|
* @param t1 first matrix |
576 |
|
* @param t2 second matrix |