6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
53 |
|
#include <cmath> |
54 |
|
#include "Vector.hpp" |
55 |
|
|
56 |
< |
namespace oopse { |
56 |
> |
namespace OpenMD { |
57 |
|
|
58 |
|
/** |
59 |
|
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
152 |
|
Vector<Real, Row> getRow(unsigned int row) { |
153 |
|
Vector<Real, Row> v; |
154 |
|
|
155 |
< |
for (unsigned int i = 0; i < Row; i++) |
155 |
> |
for (unsigned int i = 0; i < Col; i++) |
156 |
|
v[i] = this->data_[row][i]; |
157 |
|
|
158 |
|
return v; |
165 |
|
*/ |
166 |
|
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
167 |
|
|
168 |
< |
for (unsigned int i = 0; i < Row; i++) |
168 |
> |
for (unsigned int i = 0; i < Col; i++) |
169 |
|
this->data_[row][i] = v[i]; |
170 |
|
} |
171 |
|
|
177 |
|
Vector<Real, Col> getColumn(unsigned int col) { |
178 |
|
Vector<Real, Col> v; |
179 |
|
|
180 |
< |
for (unsigned int j = 0; j < Col; j++) |
180 |
> |
for (unsigned int j = 0; j < Row; j++) |
181 |
|
v[j] = this->data_[j][col]; |
182 |
|
|
183 |
|
return v; |
190 |
|
*/ |
191 |
|
void setColumn(unsigned int col, const Vector<Real, Col>& v){ |
192 |
|
|
193 |
< |
for (unsigned int j = 0; j < Col; j++) |
193 |
> |
for (unsigned int j = 0; j < Row; j++) |
194 |
|
this->data_[j][col] = v[j]; |
195 |
|
} |
196 |
|
|
390 |
|
|
391 |
|
return result; |
392 |
|
} |
393 |
< |
|
393 |
> |
|
394 |
> |
template<class MatrixType> |
395 |
> |
void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { |
396 |
> |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
397 |
> |
assert(beginCol + m.getNCol() -1 <= getNCol()); |
398 |
> |
|
399 |
> |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
400 |
> |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
401 |
> |
this->data_[beginRow+i][beginCol+j] = m(i, j); |
402 |
> |
} |
403 |
> |
|
404 |
> |
template<class MatrixType> |
405 |
> |
void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { |
406 |
> |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
407 |
> |
assert(beginCol + m.getNCol() - 1 <= getNCol()); |
408 |
> |
|
409 |
> |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
410 |
> |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
411 |
> |
m(i, j) = this->data_[beginRow+i][beginCol+j]; |
412 |
> |
} |
413 |
> |
|
414 |
> |
unsigned int getNRow() const {return Row;} |
415 |
> |
unsigned int getNCol() const {return Col;} |
416 |
> |
|
417 |
|
protected: |
418 |
|
Real data_[Row][Col]; |
419 |
|
}; |
507 |
|
} |
508 |
|
|
509 |
|
/** |
510 |
< |
* Return the multiplication of a matrix and a vector (m * v). |
510 |
> |
* Returns the multiplication of a matrix and a vector (m * v). |
511 |
|
* @return the multiplication of a matrix and a vector |
512 |
|
* @param m the matrix |
513 |
|
* @param v the vector |
524 |
|
} |
525 |
|
|
526 |
|
/** |
527 |
+ |
* Returns the multiplication of a vector transpose and a matrix (v^T * m). |
528 |
+ |
* @return the multiplication of a vector transpose and a matrix |
529 |
+ |
* @param v the vector |
530 |
+ |
* @param m the matrix |
531 |
+ |
*/ |
532 |
+ |
template<typename Real, unsigned int Row, unsigned int Col> |
533 |
+ |
inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { |
534 |
+ |
Vector<Real, Row> result; |
535 |
+ |
|
536 |
+ |
for (unsigned int i = 0; i < Col ; i++) |
537 |
+ |
for (unsigned int j = 0; j < Row ; j++) |
538 |
+ |
result[i] += v[j] * m(j, i); |
539 |
+ |
|
540 |
+ |
return result; |
541 |
+ |
} |
542 |
+ |
|
543 |
+ |
/** |
544 |
|
* Return the scalar division of matrix (m / s). |
545 |
|
* @return the scalar division of matrix |
546 |
|
* @param m the matrix |
555 |
|
return result; |
556 |
|
} |
557 |
|
|
558 |
+ |
|
559 |
|
/** |
560 |
+ |
* Returns the vector (cross) product of two matrices. This |
561 |
+ |
* operation is defined in: |
562 |
+ |
* |
563 |
+ |
* W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," |
564 |
+ |
* CCP5 Newsletter No 46., pp. 18-30. |
565 |
+ |
* |
566 |
+ |
* Equation 21 defines: |
567 |
+ |
* V_alpha = \sum_\beta [ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
568 |
+ |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} ] |
569 |
+ |
* where \alpha+1 and \alpha+2 are regarded as cyclic permuations of the |
570 |
+ |
* matrix indices (i.e. for a 3x3 matrix, when \alpha = 2, \alpha + 1 = 3, |
571 |
+ |
* and \alpha + 2 = 1). |
572 |
+ |
* |
573 |
+ |
* @param t1 first matrix |
574 |
+ |
* @param t2 second matrix |
575 |
+ |
* @return the cross product (vector product) of t1 and t2 |
576 |
+ |
*/ |
577 |
+ |
template<typename Real, unsigned int Row, unsigned int Col> |
578 |
+ |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) { |
579 |
+ |
Vector<Real, Row> result; |
580 |
+ |
unsigned int i1; |
581 |
+ |
unsigned int i2; |
582 |
+ |
|
583 |
+ |
for (unsigned int i = 0; i < Row; i++) { |
584 |
+ |
i1 = (i+1)%Row; |
585 |
+ |
i2 = (i+2)%Row; |
586 |
+ |
|
587 |
+ |
for (unsigned int j =0; j < Col; j++) { |
588 |
+ |
result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
589 |
+ |
} |
590 |
+ |
} |
591 |
+ |
|
592 |
+ |
return result; |
593 |
+ |
} |
594 |
+ |
|
595 |
+ |
|
596 |
+ |
/** |
597 |
|
* Write to an output stream |
598 |
|
*/ |
599 |
|
template<typename Real, unsigned int Row, unsigned int Col> |