1 |
|
/* |
2 |
< |
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
< |
* |
4 |
< |
* Contact: oopse@oopse.org |
5 |
< |
* |
6 |
< |
* This program is free software; you can redistribute it and/or |
7 |
< |
* modify it under the terms of the GNU Lesser General Public License |
8 |
< |
* as published by the Free Software Foundation; either version 2.1 |
9 |
< |
* of the License, or (at your option) any later version. |
10 |
< |
* All we ask is that proper credit is given for our work, which includes |
11 |
< |
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
< |
* of your source code files, and to any copyright notice that you may distribute |
13 |
< |
* with programs based on this work. |
14 |
< |
* |
15 |
< |
* This program is distributed in the hope that it will be useful, |
16 |
< |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
< |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
< |
* GNU Lesser General Public License for more details. |
19 |
< |
* |
20 |
< |
* You should have received a copy of the GNU Lesser General Public License |
21 |
< |
* along with this program; if not, write to the Free Software |
22 |
< |
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
< |
|
26 |
< |
|
41 |
> |
|
42 |
|
/** |
43 |
|
* @file RectMatrix.hpp |
44 |
|
* @author Teng Lin |
48 |
|
|
49 |
|
#ifndef MATH_RECTMATRIX_HPP |
50 |
|
#define MATH_RECTMATRIX_HPP |
51 |
< |
|
51 |
> |
#include <math.h> |
52 |
|
#include <cmath> |
53 |
|
#include "Vector.hpp" |
54 |
|
|
55 |
< |
namespace oopse { |
55 |
> |
namespace OpenMD { |
56 |
|
|
57 |
< |
/** |
58 |
< |
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
59 |
< |
* @brief rectangular matrix class |
60 |
< |
*/ |
61 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
62 |
< |
class RectMatrix { |
63 |
< |
public: |
57 |
> |
/** |
58 |
> |
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
59 |
> |
* @brief rectangular matrix class |
60 |
> |
*/ |
61 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
62 |
> |
class RectMatrix { |
63 |
> |
public: |
64 |
> |
typedef Real ElemType; |
65 |
> |
typedef Real* ElemPoinerType; |
66 |
> |
|
67 |
> |
/** default constructor */ |
68 |
> |
RectMatrix() { |
69 |
> |
for (unsigned int i = 0; i < Row; i++) |
70 |
> |
for (unsigned int j = 0; j < Col; j++) |
71 |
> |
this->data_[i][j] = 0.0; |
72 |
> |
} |
73 |
|
|
74 |
< |
/** default constructor */ |
75 |
< |
RectMatrix() { |
76 |
< |
for (unsigned int i = 0; i < Row; i++) |
77 |
< |
for (unsigned int j = 0; j < Col; j++) |
78 |
< |
data_[i][j] = 0.0; |
79 |
< |
} |
74 |
> |
/** Constructs and initializes every element of this matrix to a scalar */ |
75 |
> |
RectMatrix(Real s) { |
76 |
> |
for (unsigned int i = 0; i < Row; i++) |
77 |
> |
for (unsigned int j = 0; j < Col; j++) |
78 |
> |
this->data_[i][j] = s; |
79 |
> |
} |
80 |
|
|
81 |
< |
/** Constructs and initializes every element of this matrix to a scalar */ |
82 |
< |
RectMatrix(Real s) { |
83 |
< |
for (unsigned int i = 0; i < Row; i++) |
84 |
< |
for (unsigned int j = 0; j < Col; j++) |
85 |
< |
data_[i][j] = s; |
62 |
< |
} |
81 |
> |
RectMatrix(Real* array) { |
82 |
> |
for (unsigned int i = 0; i < Row; i++) |
83 |
> |
for (unsigned int j = 0; j < Col; j++) |
84 |
> |
this->data_[i][j] = array[i * Row + j]; |
85 |
> |
} |
86 |
|
|
87 |
< |
/** copy constructor */ |
88 |
< |
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
89 |
< |
*this = m; |
90 |
< |
} |
68 |
< |
|
69 |
< |
/** destructor*/ |
70 |
< |
~RectMatrix() {} |
71 |
< |
|
72 |
< |
/** copy assignment operator */ |
73 |
< |
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
74 |
< |
if (this == &m) |
75 |
< |
return *this; |
87 |
> |
/** copy constructor */ |
88 |
> |
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
89 |
> |
*this = m; |
90 |
> |
} |
91 |
|
|
92 |
< |
for (unsigned int i = 0; i < Row; i++) |
93 |
< |
for (unsigned int j = 0; j < Col; j++) |
79 |
< |
data_[i][j] = m.data_[i][j]; |
80 |
< |
return *this; |
81 |
< |
} |
82 |
< |
|
83 |
< |
/** |
84 |
< |
* Return the reference of a single element of this matrix. |
85 |
< |
* @return the reference of a single element of this matrix |
86 |
< |
* @param i row index |
87 |
< |
* @param j colum index |
88 |
< |
*/ |
89 |
< |
double& operator()(unsigned int i, unsigned int j) { |
90 |
< |
//assert( i < Row && j < Col); |
91 |
< |
return data_[i][j]; |
92 |
< |
} |
92 |
> |
/** destructor*/ |
93 |
> |
~RectMatrix() {} |
94 |
|
|
95 |
< |
/** |
96 |
< |
* Return the value of a single element of this matrix. |
97 |
< |
* @return the value of a single element of this matrix |
98 |
< |
* @param i row index |
99 |
< |
* @param j colum index |
100 |
< |
*/ |
101 |
< |
double operator()(unsigned int i, unsigned int j) const { |
95 |
> |
/** copy assignment operator */ |
96 |
> |
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
97 |
> |
if (this == &m) |
98 |
> |
return *this; |
99 |
> |
|
100 |
> |
for (unsigned int i = 0; i < Row; i++) |
101 |
> |
for (unsigned int j = 0; j < Col; j++) |
102 |
> |
this->data_[i][j] = m.data_[i][j]; |
103 |
> |
return *this; |
104 |
> |
} |
105 |
|
|
106 |
< |
return data_[i][j]; |
107 |
< |
} |
106 |
> |
/** |
107 |
> |
* Return the reference of a single element of this matrix. |
108 |
> |
* @return the reference of a single element of this matrix |
109 |
> |
* @param i row index |
110 |
> |
* @param j Column index |
111 |
> |
*/ |
112 |
> |
Real& operator()(unsigned int i, unsigned int j) { |
113 |
> |
//assert( i < Row && j < Col); |
114 |
> |
return this->data_[i][j]; |
115 |
> |
} |
116 |
|
|
117 |
< |
/** |
118 |
< |
* Returns a row of this matrix as a vector. |
119 |
< |
* @return a row of this matrix as a vector |
120 |
< |
* @param row the row index |
121 |
< |
*/ |
122 |
< |
Vector<Real, Row> getRow(unsigned int row) { |
123 |
< |
Vector<Real, Row> v; |
117 |
> |
/** |
118 |
> |
* Return the value of a single element of this matrix. |
119 |
> |
* @return the value of a single element of this matrix |
120 |
> |
* @param i row index |
121 |
> |
* @param j Column index |
122 |
> |
*/ |
123 |
> |
Real operator()(unsigned int i, unsigned int j) const { |
124 |
> |
|
125 |
> |
return this->data_[i][j]; |
126 |
> |
} |
127 |
|
|
128 |
< |
for (unsigned int i = 0; i < Row; i++) |
129 |
< |
v[i] = data_[row][i]; |
128 |
> |
/** |
129 |
> |
* Copy the internal data to an array |
130 |
> |
* @param array the pointer of destination array |
131 |
> |
*/ |
132 |
> |
void getArray(Real* array) { |
133 |
> |
for (unsigned int i = 0; i < Row; i++) { |
134 |
> |
for (unsigned int j = 0; j < Col; j++) { |
135 |
> |
array[i * Row + j] = this->data_[i][j]; |
136 |
> |
} |
137 |
> |
} |
138 |
> |
} |
139 |
|
|
116 |
– |
return v; |
117 |
– |
} |
140 |
|
|
141 |
< |
/** |
142 |
< |
* Sets a row of this matrix |
143 |
< |
* @param row the row index |
144 |
< |
* @param v the vector to be set |
123 |
< |
*/ |
124 |
< |
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
141 |
> |
/** Returns the pointer of internal array */ |
142 |
> |
Real* getArrayPointer() { |
143 |
> |
return &this->data_[0][0]; |
144 |
> |
} |
145 |
|
|
146 |
< |
for (unsigned int i = 0; i < Row; i++) |
147 |
< |
data_[row][i] = v[i]; |
148 |
< |
} |
146 |
> |
/** |
147 |
> |
* Returns a row of this matrix as a vector. |
148 |
> |
* @return a row of this matrix as a vector |
149 |
> |
* @param row the row index |
150 |
> |
*/ |
151 |
> |
Vector<Real, Row> getRow(unsigned int row) { |
152 |
> |
Vector<Real, Row> v; |
153 |
|
|
154 |
< |
/** |
155 |
< |
* Returns a column of this matrix as a vector. |
132 |
< |
* @return a column of this matrix as a vector |
133 |
< |
* @param col the column index |
134 |
< |
*/ |
135 |
< |
Vector<Real, Col> getColum(unsigned int col) { |
136 |
< |
Vector<Real, Col> v; |
154 |
> |
for (unsigned int i = 0; i < Col; i++) |
155 |
> |
v[i] = this->data_[row][i]; |
156 |
|
|
157 |
< |
for (unsigned int j = 0; j < Col; j++) |
158 |
< |
v[j] = data_[j][col]; |
157 |
> |
return v; |
158 |
> |
} |
159 |
|
|
160 |
< |
return v; |
161 |
< |
} |
162 |
< |
|
163 |
< |
/** |
164 |
< |
* Sets a column of this matrix |
165 |
< |
* @param col the column index |
147 |
< |
* @param v the vector to be set |
148 |
< |
*/ |
149 |
< |
void setColum(unsigned int col, const Vector<Real, Col>& v){ |
160 |
> |
/** |
161 |
> |
* Sets a row of this matrix |
162 |
> |
* @param row the row index |
163 |
> |
* @param v the vector to be set |
164 |
> |
*/ |
165 |
> |
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
166 |
|
|
167 |
< |
for (unsigned int j = 0; j < Col; j++) |
168 |
< |
data_[j][col] = v[j]; |
169 |
< |
} |
167 |
> |
for (unsigned int i = 0; i < Col; i++) |
168 |
> |
this->data_[row][i] = v[i]; |
169 |
> |
} |
170 |
|
|
171 |
< |
/** |
172 |
< |
* swap two rows of this matrix |
173 |
< |
* @param i the first row |
174 |
< |
* @param j the second row |
175 |
< |
*/ |
176 |
< |
void swapRow(unsigned int i, unsigned int j){ |
177 |
< |
assert(i < Row && j < Row); |
171 |
> |
/** |
172 |
> |
* Returns a column of this matrix as a vector. |
173 |
> |
* @return a column of this matrix as a vector |
174 |
> |
* @param col the column index |
175 |
> |
*/ |
176 |
> |
Vector<Real, Col> getColumn(unsigned int col) { |
177 |
> |
Vector<Real, Col> v; |
178 |
|
|
179 |
< |
for (unsigned int k = 0; k < Col; k++) |
180 |
< |
std::swap(data_[i][k], data_[j][k]); |
165 |
< |
} |
179 |
> |
for (unsigned int j = 0; j < Row; j++) |
180 |
> |
v[j] = this->data_[j][col]; |
181 |
|
|
182 |
< |
/** |
183 |
< |
* swap two colums of this matrix |
169 |
< |
* @param i the first colum |
170 |
< |
* @param j the second colum |
171 |
< |
*/ |
172 |
< |
void swapColum(unsigned int i, unsigned int j){ |
173 |
< |
assert(i < Col && j < Col); |
174 |
< |
|
175 |
< |
for (unsigned int k = 0; k < Row; k++) |
176 |
< |
std::swap(data_[k][i], data_[k][j]); |
177 |
< |
} |
182 |
> |
return v; |
183 |
> |
} |
184 |
|
|
185 |
< |
/** |
186 |
< |
* Tests if this matrix is identical to matrix m |
187 |
< |
* @return true if this matrix is equal to the matrix m, return false otherwise |
188 |
< |
* @m matrix to be compared |
189 |
< |
* |
190 |
< |
* @todo replace operator == by template function equal |
185 |
< |
*/ |
186 |
< |
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
187 |
< |
for (unsigned int i = 0; i < Row; i++) |
188 |
< |
for (unsigned int j = 0; j < Col; j++) |
189 |
< |
if (!equal(data_[i][j], m.data_[i][j])) |
190 |
< |
return false; |
185 |
> |
/** |
186 |
> |
* Sets a column of this matrix |
187 |
> |
* @param col the column index |
188 |
> |
* @param v the vector to be set |
189 |
> |
*/ |
190 |
> |
void setColumn(unsigned int col, const Vector<Real, Col>& v){ |
191 |
|
|
192 |
< |
return true; |
193 |
< |
} |
192 |
> |
for (unsigned int j = 0; j < Row; j++) |
193 |
> |
this->data_[j][col] = v[j]; |
194 |
> |
} |
195 |
|
|
196 |
< |
/** |
197 |
< |
* Tests if this matrix is not equal to matrix m |
198 |
< |
* @return true if this matrix is not equal to the matrix m, return false otherwise |
199 |
< |
* @m matrix to be compared |
200 |
< |
*/ |
201 |
< |
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
202 |
< |
return !(*this == m); |
202 |
< |
} |
196 |
> |
/** |
197 |
> |
* swap two rows of this matrix |
198 |
> |
* @param i the first row |
199 |
> |
* @param j the second row |
200 |
> |
*/ |
201 |
> |
void swapRow(unsigned int i, unsigned int j){ |
202 |
> |
assert(i < Row && j < Row); |
203 |
|
|
204 |
< |
/** Negates the value of this matrix in place. */ |
205 |
< |
inline void negate() { |
206 |
< |
for (unsigned int i = 0; i < Row; i++) |
207 |
< |
for (unsigned int j = 0; j < Col; j++) |
208 |
< |
data_[i][j] = -data_[i][j]; |
209 |
< |
} |
210 |
< |
|
211 |
< |
/** |
212 |
< |
* Sets the value of this matrix to the negation of matrix m. |
213 |
< |
* @param m the source matrix |
214 |
< |
*/ |
215 |
< |
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
216 |
< |
for (unsigned int i = 0; i < Row; i++) |
217 |
< |
for (unsigned int j = 0; j < Col; j++) |
218 |
< |
data_[i][j] = -m.data_[i][j]; |
219 |
< |
} |
220 |
< |
|
221 |
< |
/** |
222 |
< |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
223 |
< |
* @param m the other matrix |
224 |
< |
*/ |
225 |
< |
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
226 |
< |
for (unsigned int i = 0; i < Row; i++) |
227 |
< |
for (unsigned int j = 0; j < Col; j++) |
228 |
< |
data_[i][j] += m.data_[i][j]; |
229 |
< |
} |
230 |
< |
|
231 |
< |
/** |
232 |
< |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
233 |
< |
* @param m1 the first matrix |
234 |
< |
* @param m2 the second matrix |
235 |
< |
*/ |
236 |
< |
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
237 |
< |
for (unsigned int i = 0; i < Row; i++) |
238 |
< |
for (unsigned int j = 0; j < Col; j++) |
239 |
< |
data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
240 |
< |
} |
241 |
< |
|
242 |
< |
/** |
243 |
< |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
244 |
< |
* @param m the other matrix |
245 |
< |
*/ |
246 |
< |
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
247 |
< |
for (unsigned int i = 0; i < Row; i++) |
248 |
< |
for (unsigned int j = 0; j < Col; j++) |
249 |
< |
data_[i][j] -= m.data_[i][j]; |
250 |
< |
} |
251 |
< |
|
252 |
< |
/** |
253 |
< |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
254 |
< |
* @param m1 the first matrix |
255 |
< |
* @param m2 the second matrix |
256 |
< |
*/ |
257 |
< |
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
258 |
< |
for (unsigned int i = 0; i < Row; i++) |
259 |
< |
for (unsigned int j = 0; j < Col; j++) |
260 |
< |
data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
261 |
< |
} |
204 |
> |
for (unsigned int k = 0; k < Col; k++) |
205 |
> |
std::swap(this->data_[i][k], this->data_[j][k]); |
206 |
> |
} |
207 |
|
|
208 |
< |
/** |
209 |
< |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
210 |
< |
* @param s the scalar value |
211 |
< |
*/ |
212 |
< |
inline void mul( double s ) { |
213 |
< |
for (unsigned int i = 0; i < Row; i++) |
214 |
< |
for (unsigned int j = 0; j < Col; j++) |
215 |
< |
data_[i][j] *= s; |
216 |
< |
} |
208 |
> |
/** |
209 |
> |
* swap two Columns of this matrix |
210 |
> |
* @param i the first Column |
211 |
> |
* @param j the second Column |
212 |
> |
*/ |
213 |
> |
void swapColumn(unsigned int i, unsigned int j){ |
214 |
> |
assert(i < Col && j < Col); |
215 |
> |
|
216 |
> |
for (unsigned int k = 0; k < Row; k++) |
217 |
> |
std::swap(this->data_[k][i], this->data_[k][j]); |
218 |
> |
} |
219 |
|
|
220 |
< |
/** |
221 |
< |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
222 |
< |
* @param s the scalar value |
223 |
< |
* @param m the matrix |
224 |
< |
*/ |
225 |
< |
inline void mul( double s, const RectMatrix<Real, Row, Col>& m ) { |
226 |
< |
for (unsigned int i = 0; i < Row; i++) |
227 |
< |
for (unsigned int j = 0; j < Col; j++) |
228 |
< |
data_[i][j] = s * m.data_[i][j]; |
229 |
< |
} |
220 |
> |
/** |
221 |
> |
* Tests if this matrix is identical to matrix m |
222 |
> |
* @return true if this matrix is equal to the matrix m, return false otherwise |
223 |
> |
* @m matrix to be compared |
224 |
> |
* |
225 |
> |
* @todo replace operator == by template function equal |
226 |
> |
*/ |
227 |
> |
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
228 |
> |
for (unsigned int i = 0; i < Row; i++) |
229 |
> |
for (unsigned int j = 0; j < Col; j++) |
230 |
> |
if (!equal(this->data_[i][j], m.data_[i][j])) |
231 |
> |
return false; |
232 |
|
|
233 |
< |
/** |
234 |
< |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
286 |
< |
* @param s the scalar value |
287 |
< |
*/ |
288 |
< |
inline void div( double s) { |
289 |
< |
for (unsigned int i = 0; i < Row; i++) |
290 |
< |
for (unsigned int j = 0; j < Col; j++) |
291 |
< |
data_[i][j] /= s; |
292 |
< |
} |
233 |
> |
return true; |
234 |
> |
} |
235 |
|
|
236 |
< |
/** |
237 |
< |
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
238 |
< |
* @param s the scalar value |
239 |
< |
* @param m the matrix |
240 |
< |
*/ |
241 |
< |
inline void div( double s, const RectMatrix<Real, Row, Col>& m ) { |
242 |
< |
for (unsigned int i = 0; i < Row; i++) |
243 |
< |
for (unsigned int j = 0; j < Col; j++) |
302 |
< |
data_[i][j] = m.data_[i][j] / s; |
303 |
< |
} |
236 |
> |
/** |
237 |
> |
* Tests if this matrix is not equal to matrix m |
238 |
> |
* @return true if this matrix is not equal to the matrix m, return false otherwise |
239 |
> |
* @m matrix to be compared |
240 |
> |
*/ |
241 |
> |
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
242 |
> |
return !(*this == m); |
243 |
> |
} |
244 |
|
|
245 |
< |
/** |
246 |
< |
* Multiples a scalar into every element of this matrix. |
247 |
< |
* @param s the scalar value |
248 |
< |
*/ |
249 |
< |
RectMatrix<Real, Row, Col>& operator *=(const double s) { |
250 |
< |
this->mul(s); |
251 |
< |
return *this; |
252 |
< |
} |
253 |
< |
|
254 |
< |
/** |
255 |
< |
* Divides every element of this matrix by a scalar. |
256 |
< |
* @param s the scalar value |
257 |
< |
*/ |
258 |
< |
RectMatrix<Real, Row, Col>& operator /=(const double s) { |
259 |
< |
this->div(s); |
260 |
< |
return *this; |
321 |
< |
} |
322 |
< |
|
323 |
< |
/** |
324 |
< |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
325 |
< |
* @param m the other matrix |
326 |
< |
*/ |
327 |
< |
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
328 |
< |
add(m); |
329 |
< |
return *this; |
330 |
< |
} |
331 |
< |
|
332 |
< |
/** |
333 |
< |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
334 |
< |
* @param m the other matrix |
335 |
< |
*/ |
336 |
< |
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
337 |
< |
sub(m); |
338 |
< |
return *this; |
339 |
< |
} |
340 |
< |
|
341 |
< |
/** Return the transpose of this matrix */ |
342 |
< |
RectMatrix<Real, Col, Row> transpose(){ |
343 |
< |
RectMatrix<Real, Col, Row> result; |
245 |
> |
/** Negates the value of this matrix in place. */ |
246 |
> |
inline void negate() { |
247 |
> |
for (unsigned int i = 0; i < Row; i++) |
248 |
> |
for (unsigned int j = 0; j < Col; j++) |
249 |
> |
this->data_[i][j] = -this->data_[i][j]; |
250 |
> |
} |
251 |
> |
|
252 |
> |
/** |
253 |
> |
* Sets the value of this matrix to the negation of matrix m. |
254 |
> |
* @param m the source matrix |
255 |
> |
*/ |
256 |
> |
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
257 |
> |
for (unsigned int i = 0; i < Row; i++) |
258 |
> |
for (unsigned int j = 0; j < Col; j++) |
259 |
> |
this->data_[i][j] = -m.data_[i][j]; |
260 |
> |
} |
261 |
|
|
262 |
< |
for (unsigned int i = 0; i < Row; i++) |
263 |
< |
for (unsigned int j = 0; j < Col; j++) |
264 |
< |
result(j, i) = data_[i][j]; |
262 |
> |
/** |
263 |
> |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
264 |
> |
* @param m the other matrix |
265 |
> |
*/ |
266 |
> |
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
267 |
> |
for (unsigned int i = 0; i < Row; i++) |
268 |
> |
for (unsigned int j = 0; j < Col; j++) |
269 |
> |
this->data_[i][j] += m.data_[i][j]; |
270 |
> |
} |
271 |
> |
|
272 |
> |
/** |
273 |
> |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
274 |
> |
* @param m1 the first matrix |
275 |
> |
* @param m2 the second matrix |
276 |
> |
*/ |
277 |
> |
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
278 |
> |
for (unsigned int i = 0; i < Row; i++) |
279 |
> |
for (unsigned int j = 0; j < Col; j++) |
280 |
> |
this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
281 |
> |
} |
282 |
> |
|
283 |
> |
/** |
284 |
> |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
285 |
> |
* @param m the other matrix |
286 |
> |
*/ |
287 |
> |
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
288 |
> |
for (unsigned int i = 0; i < Row; i++) |
289 |
> |
for (unsigned int j = 0; j < Col; j++) |
290 |
> |
this->data_[i][j] -= m.data_[i][j]; |
291 |
> |
} |
292 |
> |
|
293 |
> |
/** |
294 |
> |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
295 |
> |
* @param m1 the first matrix |
296 |
> |
* @param m2 the second matrix |
297 |
> |
*/ |
298 |
> |
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
299 |
> |
for (unsigned int i = 0; i < Row; i++) |
300 |
> |
for (unsigned int j = 0; j < Col; j++) |
301 |
> |
this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
302 |
> |
} |
303 |
|
|
304 |
< |
return result; |
305 |
< |
} |
306 |
< |
|
307 |
< |
protected: |
308 |
< |
Real data_[Row][Col]; |
309 |
< |
}; |
304 |
> |
/** |
305 |
> |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
306 |
> |
* @param s the scalar value |
307 |
> |
*/ |
308 |
> |
inline void mul( Real s ) { |
309 |
> |
for (unsigned int i = 0; i < Row; i++) |
310 |
> |
for (unsigned int j = 0; j < Col; j++) |
311 |
> |
this->data_[i][j] *= s; |
312 |
> |
} |
313 |
|
|
314 |
< |
/** Negate the value of every element of this matrix. */ |
315 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
316 |
< |
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
317 |
< |
RectMatrix<Real, Row, Col> result(m); |
314 |
> |
/** |
315 |
> |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
316 |
> |
* @param s the scalar value |
317 |
> |
* @param m the matrix |
318 |
> |
*/ |
319 |
> |
inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { |
320 |
> |
for (unsigned int i = 0; i < Row; i++) |
321 |
> |
for (unsigned int j = 0; j < Col; j++) |
322 |
> |
this->data_[i][j] = s * m.data_[i][j]; |
323 |
> |
} |
324 |
|
|
325 |
< |
result.negate(); |
325 |
> |
/** |
326 |
> |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
327 |
> |
* @param s the scalar value |
328 |
> |
*/ |
329 |
> |
inline void div( Real s) { |
330 |
> |
for (unsigned int i = 0; i < Row; i++) |
331 |
> |
for (unsigned int j = 0; j < Col; j++) |
332 |
> |
this->data_[i][j] /= s; |
333 |
> |
} |
334 |
|
|
335 |
< |
return result; |
335 |
> |
/** |
336 |
> |
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
337 |
> |
* @param s the scalar value |
338 |
> |
* @param m the matrix |
339 |
> |
*/ |
340 |
> |
inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { |
341 |
> |
for (unsigned int i = 0; i < Row; i++) |
342 |
> |
for (unsigned int j = 0; j < Col; j++) |
343 |
> |
this->data_[i][j] = m.data_[i][j] / s; |
344 |
|
} |
345 |
< |
|
345 |
> |
|
346 |
|
/** |
347 |
< |
* Return the sum of two matrixes (m1 + m2). |
348 |
< |
* @return the sum of two matrixes |
349 |
< |
* @param m1 the first matrix |
350 |
< |
* @param m2 the second matrix |
351 |
< |
*/ |
352 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
353 |
< |
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
374 |
< |
RectMatrix<Real, Row, Col> result; |
347 |
> |
* Multiples a scalar into every element of this matrix. |
348 |
> |
* @param s the scalar value |
349 |
> |
*/ |
350 |
> |
RectMatrix<Real, Row, Col>& operator *=(const Real s) { |
351 |
> |
this->mul(s); |
352 |
> |
return *this; |
353 |
> |
} |
354 |
|
|
355 |
< |
result.add(m1, m2); |
355 |
> |
/** |
356 |
> |
* Divides every element of this matrix by a scalar. |
357 |
> |
* @param s the scalar value |
358 |
> |
*/ |
359 |
> |
RectMatrix<Real, Row, Col>& operator /=(const Real s) { |
360 |
> |
this->div(s); |
361 |
> |
return *this; |
362 |
> |
} |
363 |
|
|
364 |
< |
return result; |
364 |
> |
/** |
365 |
> |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
366 |
> |
* @param m the other matrix |
367 |
> |
*/ |
368 |
> |
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
369 |
> |
add(m); |
370 |
> |
return *this; |
371 |
|
} |
372 |
< |
|
372 |
> |
|
373 |
|
/** |
374 |
< |
* Return the difference of two matrixes (m1 - m2). |
375 |
< |
* @return the sum of two matrixes |
376 |
< |
* @param m1 the first matrix |
377 |
< |
* @param m2 the second matrix |
378 |
< |
*/ |
379 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
380 |
< |
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
389 |
< |
RectMatrix<Real, Row, Col> result; |
374 |
> |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
375 |
> |
* @param m the other matrix |
376 |
> |
*/ |
377 |
> |
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
378 |
> |
sub(m); |
379 |
> |
return *this; |
380 |
> |
} |
381 |
|
|
382 |
< |
result.sub(m1, m2); |
382 |
> |
/** Return the transpose of this matrix */ |
383 |
> |
RectMatrix<Real, Col, Row> transpose() const{ |
384 |
> |
RectMatrix<Real, Col, Row> result; |
385 |
> |
|
386 |
> |
for (unsigned int i = 0; i < Row; i++) |
387 |
> |
for (unsigned int j = 0; j < Col; j++) |
388 |
> |
result(j, i) = this->data_[i][j]; |
389 |
|
|
390 |
< |
return result; |
390 |
> |
return result; |
391 |
|
} |
392 |
|
|
393 |
< |
/** |
394 |
< |
* Return the multiplication of scalra and matrix (m * s). |
395 |
< |
* @return the multiplication of a scalra and a matrix |
396 |
< |
* @param m the matrix |
400 |
< |
* @param s the scalar |
401 |
< |
*/ |
402 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
403 |
< |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
404 |
< |
RectMatrix<Real, Row, Col> result; |
393 |
> |
template<class MatrixType> |
394 |
> |
void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { |
395 |
> |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
396 |
> |
assert(beginCol + m.getNCol() -1 <= getNCol()); |
397 |
|
|
398 |
< |
result.mul(s, m); |
398 |
> |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
399 |
> |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
400 |
> |
this->data_[beginRow+i][beginCol+j] = m(i, j); |
401 |
> |
} |
402 |
|
|
403 |
< |
return result; |
403 |
> |
template<class MatrixType> |
404 |
> |
void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { |
405 |
> |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
406 |
> |
assert(beginCol + m.getNCol() - 1 <= getNCol()); |
407 |
> |
|
408 |
> |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
409 |
> |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
410 |
> |
m(i, j) = this->data_[beginRow+i][beginCol+j]; |
411 |
|
} |
412 |
+ |
|
413 |
+ |
unsigned int getNRow() const {return Row;} |
414 |
+ |
unsigned int getNCol() const {return Col;} |
415 |
|
|
416 |
< |
/** |
417 |
< |
* Return the multiplication of a scalra and a matrix (s * m). |
418 |
< |
* @return the multiplication of a scalra and a matrix |
414 |
< |
* @param s the scalar |
415 |
< |
* @param m the matrix |
416 |
< |
*/ |
417 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
418 |
< |
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
419 |
< |
RectMatrix<Real, Row, Col> result; |
416 |
> |
protected: |
417 |
> |
Real data_[Row][Col]; |
418 |
> |
}; |
419 |
|
|
420 |
< |
result.mul(s, m); |
420 |
> |
/** Negate the value of every element of this matrix. */ |
421 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
422 |
> |
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
423 |
> |
RectMatrix<Real, Row, Col> result(m); |
424 |
|
|
425 |
< |
return result; |
426 |
< |
} |
425 |
> |
result.negate(); |
426 |
> |
|
427 |
> |
return result; |
428 |
> |
} |
429 |
|
|
430 |
< |
/** |
431 |
< |
* Return the multiplication of two matrixes (m1 * m2). |
432 |
< |
* @return the multiplication of two matrixes |
433 |
< |
* @param m1 the first matrix |
434 |
< |
* @param m2 the second matrix |
435 |
< |
*/ |
436 |
< |
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
437 |
< |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
438 |
< |
RectMatrix<Real, Row, Col> result; |
430 |
> |
/** |
431 |
> |
* Return the sum of two matrixes (m1 + m2). |
432 |
> |
* @return the sum of two matrixes |
433 |
> |
* @param m1 the first matrix |
434 |
> |
* @param m2 the second matrix |
435 |
> |
*/ |
436 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
437 |
> |
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
438 |
> |
RectMatrix<Real, Row, Col> result; |
439 |
|
|
440 |
< |
for (unsigned int i = 0; i < Row; i++) |
437 |
< |
for (unsigned int j = 0; j < Col; j++) |
438 |
< |
for (unsigned int k = 0; k < SameDim; k++) |
439 |
< |
result(i, j) += m1(i, k) * m2(k, j); |
440 |
> |
result.add(m1, m2); |
441 |
|
|
442 |
< |
return result; |
443 |
< |
} |
442 |
> |
return result; |
443 |
> |
} |
444 |
|
|
445 |
< |
/** |
446 |
< |
* Return the multiplication of a matrix and a vector (m * v). |
447 |
< |
* @return the multiplication of a matrix and a vector |
448 |
< |
* @param m the matrix |
449 |
< |
* @param v the vector |
450 |
< |
*/ |
451 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
452 |
< |
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
453 |
< |
Vector<Real, Row> result; |
445 |
> |
/** |
446 |
> |
* Return the difference of two matrixes (m1 - m2). |
447 |
> |
* @return the sum of two matrixes |
448 |
> |
* @param m1 the first matrix |
449 |
> |
* @param m2 the second matrix |
450 |
> |
*/ |
451 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
452 |
> |
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
453 |
> |
RectMatrix<Real, Row, Col> result; |
454 |
|
|
455 |
< |
for (unsigned int i = 0; i < Row ; i++) |
456 |
< |
for (unsigned int j = 0; j < Col ; j++) |
457 |
< |
result[i] += m(i, j) * v[j]; |
455 |
> |
result.sub(m1, m2); |
456 |
> |
|
457 |
> |
return result; |
458 |
> |
} |
459 |
> |
|
460 |
> |
/** |
461 |
> |
* Return the multiplication of scalra and matrix (m * s). |
462 |
> |
* @return the multiplication of a scalra and a matrix |
463 |
> |
* @param m the matrix |
464 |
> |
* @param s the scalar |
465 |
> |
*/ |
466 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
467 |
> |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
468 |
> |
RectMatrix<Real, Row, Col> result; |
469 |
> |
|
470 |
> |
result.mul(s, m); |
471 |
> |
|
472 |
> |
return result; |
473 |
> |
} |
474 |
> |
|
475 |
> |
/** |
476 |
> |
* Return the multiplication of a scalra and a matrix (s * m). |
477 |
> |
* @return the multiplication of a scalra and a matrix |
478 |
> |
* @param s the scalar |
479 |
> |
* @param m the matrix |
480 |
> |
*/ |
481 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
482 |
> |
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
483 |
> |
RectMatrix<Real, Row, Col> result; |
484 |
> |
|
485 |
> |
result.mul(s, m); |
486 |
> |
|
487 |
> |
return result; |
488 |
> |
} |
489 |
> |
|
490 |
> |
/** |
491 |
> |
* Return the multiplication of two matrixes (m1 * m2). |
492 |
> |
* @return the multiplication of two matrixes |
493 |
> |
* @param m1 the first matrix |
494 |
> |
* @param m2 the second matrix |
495 |
> |
*/ |
496 |
> |
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
497 |
> |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
498 |
> |
RectMatrix<Real, Row, Col> result; |
499 |
> |
|
500 |
> |
for (unsigned int i = 0; i < Row; i++) |
501 |
> |
for (unsigned int j = 0; j < Col; j++) |
502 |
> |
for (unsigned int k = 0; k < SameDim; k++) |
503 |
> |
result(i, j) += m1(i, k) * m2(k, j); |
504 |
> |
|
505 |
> |
return result; |
506 |
> |
} |
507 |
> |
|
508 |
> |
/** |
509 |
> |
* Return the multiplication of a matrix and a vector (m * v). |
510 |
> |
* @return the multiplication of a matrix and a vector |
511 |
> |
* @param m the matrix |
512 |
> |
* @param v the vector |
513 |
> |
*/ |
514 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
515 |
> |
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
516 |
> |
Vector<Real, Row> result; |
517 |
> |
|
518 |
> |
for (unsigned int i = 0; i < Row ; i++) |
519 |
> |
for (unsigned int j = 0; j < Col ; j++) |
520 |
> |
result[i] += m(i, j) * v[j]; |
521 |
|
|
522 |
< |
return result; |
523 |
< |
} |
522 |
> |
return result; |
523 |
> |
} |
524 |
|
|
525 |
< |
/** |
526 |
< |
* Return the scalar division of matrix (m / s). |
527 |
< |
* @return the scalar division of matrix |
528 |
< |
* @param m the matrix |
529 |
< |
* @param s the scalar |
530 |
< |
*/ |
531 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
532 |
< |
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
533 |
< |
RectMatrix<Real, Row, Col> result; |
525 |
> |
/** |
526 |
> |
* Return the scalar division of matrix (m / s). |
527 |
> |
* @return the scalar division of matrix |
528 |
> |
* @param m the matrix |
529 |
> |
* @param s the scalar |
530 |
> |
*/ |
531 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
532 |
> |
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
533 |
> |
RectMatrix<Real, Row, Col> result; |
534 |
|
|
535 |
< |
result.div(s, m); |
535 |
> |
result.div(s, m); |
536 |
|
|
537 |
< |
return result; |
538 |
< |
} |
537 |
> |
return result; |
538 |
> |
} |
539 |
|
|
540 |
< |
/** |
541 |
< |
* Write to an output stream |
542 |
< |
*/ |
543 |
< |
template<typename Real, unsigned int Row, unsigned int Col> |
544 |
< |
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
545 |
< |
for (unsigned int i = 0; i < Row ; i++) { |
546 |
< |
o << "(" |
547 |
< |
for (unsigned int j = 0; j < Col ; j++) { |
548 |
< |
o << m(i, j) << "\t" |
549 |
< |
} |
550 |
< |
o << ")" << std::endl; |
551 |
< |
} |
552 |
< |
return o; |
553 |
< |
} |
540 |
> |
/** |
541 |
> |
* Write to an output stream |
542 |
> |
*/ |
543 |
> |
template<typename Real, unsigned int Row, unsigned int Col> |
544 |
> |
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
545 |
> |
for (unsigned int i = 0; i < Row ; i++) { |
546 |
> |
o << "("; |
547 |
> |
for (unsigned int j = 0; j < Col ; j++) { |
548 |
> |
o << m(i, j); |
549 |
> |
if (j != Col -1) |
550 |
> |
o << "\t"; |
551 |
> |
} |
552 |
> |
o << ")" << std::endl; |
553 |
> |
} |
554 |
> |
return o; |
555 |
> |
} |
556 |
|
} |
557 |
|
#endif //MATH_RECTMATRIX_HPP |