1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file RectMatrix.hpp |
45 |
* @author Teng Lin |
46 |
* @date 10/11/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef MATH_RECTMATRIX_HPP |
51 |
#define MATH_RECTMATRIX_HPP |
52 |
#include <math.h> |
53 |
#include <cmath> |
54 |
#include "Vector.hpp" |
55 |
|
56 |
namespace OpenMD { |
57 |
|
58 |
/** |
59 |
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
60 |
* @brief rectangular matrix class |
61 |
*/ |
62 |
template<typename Real, unsigned int Row, unsigned int Col> |
63 |
class RectMatrix { |
64 |
public: |
65 |
typedef Real ElemType; |
66 |
typedef Real* ElemPoinerType; |
67 |
|
68 |
/** default constructor */ |
69 |
RectMatrix() { |
70 |
for (unsigned int i = 0; i < Row; i++) |
71 |
for (unsigned int j = 0; j < Col; j++) |
72 |
this->data_[i][j] = 0.0; |
73 |
} |
74 |
|
75 |
/** Constructs and initializes every element of this matrix to a scalar */ |
76 |
RectMatrix(Real s) { |
77 |
for (unsigned int i = 0; i < Row; i++) |
78 |
for (unsigned int j = 0; j < Col; j++) |
79 |
this->data_[i][j] = s; |
80 |
} |
81 |
|
82 |
RectMatrix(Real* array) { |
83 |
for (unsigned int i = 0; i < Row; i++) |
84 |
for (unsigned int j = 0; j < Col; j++) |
85 |
this->data_[i][j] = array[i * Row + j]; |
86 |
} |
87 |
|
88 |
/** copy constructor */ |
89 |
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
90 |
*this = m; |
91 |
} |
92 |
|
93 |
/** destructor*/ |
94 |
~RectMatrix() {} |
95 |
|
96 |
/** copy assignment operator */ |
97 |
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
98 |
if (this == &m) |
99 |
return *this; |
100 |
|
101 |
for (unsigned int i = 0; i < Row; i++) |
102 |
for (unsigned int j = 0; j < Col; j++) |
103 |
this->data_[i][j] = m.data_[i][j]; |
104 |
return *this; |
105 |
} |
106 |
|
107 |
/** |
108 |
* Return the reference of a single element of this matrix. |
109 |
* @return the reference of a single element of this matrix |
110 |
* @param i row index |
111 |
* @param j Column index |
112 |
*/ |
113 |
Real& operator()(unsigned int i, unsigned int j) { |
114 |
//assert( i < Row && j < Col); |
115 |
return this->data_[i][j]; |
116 |
} |
117 |
|
118 |
/** |
119 |
* Return the value of a single element of this matrix. |
120 |
* @return the value of a single element of this matrix |
121 |
* @param i row index |
122 |
* @param j Column index |
123 |
*/ |
124 |
Real operator()(unsigned int i, unsigned int j) const { |
125 |
|
126 |
return this->data_[i][j]; |
127 |
} |
128 |
|
129 |
/** |
130 |
* Copy the internal data to an array |
131 |
* @param array the pointer of destination array |
132 |
*/ |
133 |
void getArray(Real* array) { |
134 |
for (unsigned int i = 0; i < Row; i++) { |
135 |
for (unsigned int j = 0; j < Col; j++) { |
136 |
array[i * Row + j] = this->data_[i][j]; |
137 |
} |
138 |
} |
139 |
} |
140 |
|
141 |
|
142 |
/** Returns the pointer of internal array */ |
143 |
Real* getArrayPointer() { |
144 |
return &this->data_[0][0]; |
145 |
} |
146 |
|
147 |
/** |
148 |
* Returns a row of this matrix as a vector. |
149 |
* @return a row of this matrix as a vector |
150 |
* @param row the row index |
151 |
*/ |
152 |
Vector<Real, Row> getRow(unsigned int row) { |
153 |
Vector<Real, Row> v; |
154 |
|
155 |
for (unsigned int i = 0; i < Col; i++) |
156 |
v[i] = this->data_[row][i]; |
157 |
|
158 |
return v; |
159 |
} |
160 |
|
161 |
/** |
162 |
* Sets a row of this matrix |
163 |
* @param row the row index |
164 |
* @param v the vector to be set |
165 |
*/ |
166 |
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
167 |
|
168 |
for (unsigned int i = 0; i < Col; i++) |
169 |
this->data_[row][i] = v[i]; |
170 |
} |
171 |
|
172 |
/** |
173 |
* Returns a column of this matrix as a vector. |
174 |
* @return a column of this matrix as a vector |
175 |
* @param col the column index |
176 |
*/ |
177 |
Vector<Real, Col> getColumn(unsigned int col) { |
178 |
Vector<Real, Col> v; |
179 |
|
180 |
for (unsigned int j = 0; j < Row; j++) |
181 |
v[j] = this->data_[j][col]; |
182 |
|
183 |
return v; |
184 |
} |
185 |
|
186 |
/** |
187 |
* Sets a column of this matrix |
188 |
* @param col the column index |
189 |
* @param v the vector to be set |
190 |
*/ |
191 |
void setColumn(unsigned int col, const Vector<Real, Col>& v){ |
192 |
|
193 |
for (unsigned int j = 0; j < Row; j++) |
194 |
this->data_[j][col] = v[j]; |
195 |
} |
196 |
|
197 |
/** |
198 |
* swap two rows of this matrix |
199 |
* @param i the first row |
200 |
* @param j the second row |
201 |
*/ |
202 |
void swapRow(unsigned int i, unsigned int j){ |
203 |
assert(i < Row && j < Row); |
204 |
|
205 |
for (unsigned int k = 0; k < Col; k++) |
206 |
std::swap(this->data_[i][k], this->data_[j][k]); |
207 |
} |
208 |
|
209 |
/** |
210 |
* swap two Columns of this matrix |
211 |
* @param i the first Column |
212 |
* @param j the second Column |
213 |
*/ |
214 |
void swapColumn(unsigned int i, unsigned int j){ |
215 |
assert(i < Col && j < Col); |
216 |
|
217 |
for (unsigned int k = 0; k < Row; k++) |
218 |
std::swap(this->data_[k][i], this->data_[k][j]); |
219 |
} |
220 |
|
221 |
/** |
222 |
* Tests if this matrix is identical to matrix m |
223 |
* @return true if this matrix is equal to the matrix m, return false otherwise |
224 |
* @param m matrix to be compared |
225 |
* |
226 |
* @todo replace operator == by template function equal |
227 |
*/ |
228 |
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
229 |
for (unsigned int i = 0; i < Row; i++) |
230 |
for (unsigned int j = 0; j < Col; j++) |
231 |
if (!equal(this->data_[i][j], m.data_[i][j])) |
232 |
return false; |
233 |
|
234 |
return true; |
235 |
} |
236 |
|
237 |
/** |
238 |
* Tests if this matrix is not equal to matrix m |
239 |
* @return true if this matrix is not equal to the matrix m, return false otherwise |
240 |
* @param m matrix to be compared |
241 |
*/ |
242 |
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
243 |
return !(*this == m); |
244 |
} |
245 |
|
246 |
/** Negates the value of this matrix in place. */ |
247 |
inline void negate() { |
248 |
for (unsigned int i = 0; i < Row; i++) |
249 |
for (unsigned int j = 0; j < Col; j++) |
250 |
this->data_[i][j] = -this->data_[i][j]; |
251 |
} |
252 |
|
253 |
/** |
254 |
* Sets the value of this matrix to the negation of matrix m. |
255 |
* @param m the source matrix |
256 |
*/ |
257 |
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
258 |
for (unsigned int i = 0; i < Row; i++) |
259 |
for (unsigned int j = 0; j < Col; j++) |
260 |
this->data_[i][j] = -m.data_[i][j]; |
261 |
} |
262 |
|
263 |
/** |
264 |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
265 |
* @param m the other matrix |
266 |
*/ |
267 |
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
268 |
for (unsigned int i = 0; i < Row; i++) |
269 |
for (unsigned int j = 0; j < Col; j++) |
270 |
this->data_[i][j] += m.data_[i][j]; |
271 |
} |
272 |
|
273 |
/** |
274 |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
275 |
* @param m1 the first matrix |
276 |
* @param m2 the second matrix |
277 |
*/ |
278 |
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
279 |
for (unsigned int i = 0; i < Row; i++) |
280 |
for (unsigned int j = 0; j < Col; j++) |
281 |
this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
282 |
} |
283 |
|
284 |
/** |
285 |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
286 |
* @param m the other matrix |
287 |
*/ |
288 |
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
289 |
for (unsigned int i = 0; i < Row; i++) |
290 |
for (unsigned int j = 0; j < Col; j++) |
291 |
this->data_[i][j] -= m.data_[i][j]; |
292 |
} |
293 |
|
294 |
/** |
295 |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
296 |
* @param m1 the first matrix |
297 |
* @param m2 the second matrix |
298 |
*/ |
299 |
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
300 |
for (unsigned int i = 0; i < Row; i++) |
301 |
for (unsigned int j = 0; j < Col; j++) |
302 |
this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
303 |
} |
304 |
|
305 |
/** |
306 |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
307 |
* @param s the scalar value |
308 |
*/ |
309 |
inline void mul( Real s ) { |
310 |
for (unsigned int i = 0; i < Row; i++) |
311 |
for (unsigned int j = 0; j < Col; j++) |
312 |
this->data_[i][j] *= s; |
313 |
} |
314 |
|
315 |
/** |
316 |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
317 |
* @param s the scalar value |
318 |
* @param m the matrix |
319 |
*/ |
320 |
inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { |
321 |
for (unsigned int i = 0; i < Row; i++) |
322 |
for (unsigned int j = 0; j < Col; j++) |
323 |
this->data_[i][j] = s * m.data_[i][j]; |
324 |
} |
325 |
|
326 |
/** |
327 |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
328 |
* @param s the scalar value |
329 |
*/ |
330 |
inline void div( Real s) { |
331 |
for (unsigned int i = 0; i < Row; i++) |
332 |
for (unsigned int j = 0; j < Col; j++) |
333 |
this->data_[i][j] /= s; |
334 |
} |
335 |
|
336 |
/** |
337 |
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
338 |
* @param s the scalar value |
339 |
* @param m the matrix |
340 |
*/ |
341 |
inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { |
342 |
for (unsigned int i = 0; i < Row; i++) |
343 |
for (unsigned int j = 0; j < Col; j++) |
344 |
this->data_[i][j] = m.data_[i][j] / s; |
345 |
} |
346 |
|
347 |
/** |
348 |
* Multiples a scalar into every element of this matrix. |
349 |
* @param s the scalar value |
350 |
*/ |
351 |
RectMatrix<Real, Row, Col>& operator *=(const Real s) { |
352 |
this->mul(s); |
353 |
return *this; |
354 |
} |
355 |
|
356 |
/** |
357 |
* Divides every element of this matrix by a scalar. |
358 |
* @param s the scalar value |
359 |
*/ |
360 |
RectMatrix<Real, Row, Col>& operator /=(const Real s) { |
361 |
this->div(s); |
362 |
return *this; |
363 |
} |
364 |
|
365 |
/** |
366 |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
367 |
* @param m the other matrix |
368 |
*/ |
369 |
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
370 |
add(m); |
371 |
return *this; |
372 |
} |
373 |
|
374 |
/** |
375 |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
376 |
* @param m the other matrix |
377 |
*/ |
378 |
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
379 |
sub(m); |
380 |
return *this; |
381 |
} |
382 |
|
383 |
/** Return the transpose of this matrix */ |
384 |
RectMatrix<Real, Col, Row> transpose() const{ |
385 |
RectMatrix<Real, Col, Row> result; |
386 |
|
387 |
for (unsigned int i = 0; i < Row; i++) |
388 |
for (unsigned int j = 0; j < Col; j++) |
389 |
result(j, i) = this->data_[i][j]; |
390 |
|
391 |
return result; |
392 |
} |
393 |
|
394 |
template<class MatrixType> |
395 |
void setSubMatrix(unsigned int beginRow, unsigned int beginCol, const MatrixType& m) { |
396 |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
397 |
assert(beginCol + m.getNCol() -1 <= getNCol()); |
398 |
|
399 |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
400 |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
401 |
this->data_[beginRow+i][beginCol+j] = m(i, j); |
402 |
} |
403 |
|
404 |
template<class MatrixType> |
405 |
void getSubMatrix(unsigned int beginRow, unsigned int beginCol, MatrixType& m) { |
406 |
assert(beginRow + m.getNRow() -1 <= getNRow()); |
407 |
assert(beginCol + m.getNCol() - 1 <= getNCol()); |
408 |
|
409 |
for (unsigned int i = 0; i < m.getNRow(); ++i) |
410 |
for (unsigned int j = 0; j < m.getNCol(); ++j) |
411 |
m(i, j) = this->data_[beginRow+i][beginCol+j]; |
412 |
} |
413 |
|
414 |
unsigned int getNRow() const {return Row;} |
415 |
unsigned int getNCol() const {return Col;} |
416 |
|
417 |
protected: |
418 |
Real data_[Row][Col]; |
419 |
}; |
420 |
|
421 |
/** Negate the value of every element of this matrix. */ |
422 |
template<typename Real, unsigned int Row, unsigned int Col> |
423 |
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
424 |
RectMatrix<Real, Row, Col> result(m); |
425 |
|
426 |
result.negate(); |
427 |
|
428 |
return result; |
429 |
} |
430 |
|
431 |
/** |
432 |
* Return the sum of two matrixes (m1 + m2). |
433 |
* @return the sum of two matrixes |
434 |
* @param m1 the first matrix |
435 |
* @param m2 the second matrix |
436 |
*/ |
437 |
template<typename Real, unsigned int Row, unsigned int Col> |
438 |
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
439 |
RectMatrix<Real, Row, Col> result; |
440 |
|
441 |
result.add(m1, m2); |
442 |
|
443 |
return result; |
444 |
} |
445 |
|
446 |
/** |
447 |
* Return the difference of two matrixes (m1 - m2). |
448 |
* @return the sum of two matrixes |
449 |
* @param m1 the first matrix |
450 |
* @param m2 the second matrix |
451 |
*/ |
452 |
template<typename Real, unsigned int Row, unsigned int Col> |
453 |
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
454 |
RectMatrix<Real, Row, Col> result; |
455 |
|
456 |
result.sub(m1, m2); |
457 |
|
458 |
return result; |
459 |
} |
460 |
|
461 |
/** |
462 |
* Return the multiplication of scalra and matrix (m * s). |
463 |
* @return the multiplication of a scalra and a matrix |
464 |
* @param m the matrix |
465 |
* @param s the scalar |
466 |
*/ |
467 |
template<typename Real, unsigned int Row, unsigned int Col> |
468 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
469 |
RectMatrix<Real, Row, Col> result; |
470 |
|
471 |
result.mul(s, m); |
472 |
|
473 |
return result; |
474 |
} |
475 |
|
476 |
/** |
477 |
* Return the multiplication of a scalra and a matrix (s * m). |
478 |
* @return the multiplication of a scalra and a matrix |
479 |
* @param s the scalar |
480 |
* @param m the matrix |
481 |
*/ |
482 |
template<typename Real, unsigned int Row, unsigned int Col> |
483 |
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
484 |
RectMatrix<Real, Row, Col> result; |
485 |
|
486 |
result.mul(s, m); |
487 |
|
488 |
return result; |
489 |
} |
490 |
|
491 |
/** |
492 |
* Return the multiplication of two matrixes (m1 * m2). |
493 |
* @return the multiplication of two matrixes |
494 |
* @param m1 the first matrix |
495 |
* @param m2 the second matrix |
496 |
*/ |
497 |
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
498 |
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
499 |
RectMatrix<Real, Row, Col> result; |
500 |
|
501 |
for (unsigned int i = 0; i < Row; i++) |
502 |
for (unsigned int j = 0; j < Col; j++) |
503 |
for (unsigned int k = 0; k < SameDim; k++) |
504 |
result(i, j) += m1(i, k) * m2(k, j); |
505 |
|
506 |
return result; |
507 |
} |
508 |
|
509 |
/** |
510 |
* Returns the multiplication of a matrix and a vector (m * v). |
511 |
* @return the multiplication of a matrix and a vector |
512 |
* @param m the matrix |
513 |
* @param v the vector |
514 |
*/ |
515 |
template<typename Real, unsigned int Row, unsigned int Col> |
516 |
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
517 |
Vector<Real, Row> result; |
518 |
|
519 |
for (unsigned int i = 0; i < Row ; i++) |
520 |
for (unsigned int j = 0; j < Col ; j++) |
521 |
result[i] += m(i, j) * v[j]; |
522 |
|
523 |
return result; |
524 |
} |
525 |
|
526 |
/** |
527 |
* Returns the multiplication of a vector transpose and a matrix (v^T * m). |
528 |
* @return the multiplication of a vector transpose and a matrix |
529 |
* @param v the vector |
530 |
* @param m the matrix |
531 |
*/ |
532 |
template<typename Real, unsigned int Row, unsigned int Col> |
533 |
inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) { |
534 |
Vector<Real, Row> result; |
535 |
|
536 |
for (unsigned int i = 0; i < Col ; i++) |
537 |
for (unsigned int j = 0; j < Row ; j++) |
538 |
result[i] += v[j] * m(j, i); |
539 |
|
540 |
return result; |
541 |
} |
542 |
|
543 |
/** |
544 |
* Return the scalar division of matrix (m / s). |
545 |
* @return the scalar division of matrix |
546 |
* @param m the matrix |
547 |
* @param s the scalar |
548 |
*/ |
549 |
template<typename Real, unsigned int Row, unsigned int Col> |
550 |
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
551 |
RectMatrix<Real, Row, Col> result; |
552 |
|
553 |
result.div(s, m); |
554 |
|
555 |
return result; |
556 |
} |
557 |
|
558 |
|
559 |
/** |
560 |
* Returns the vector (cross) product of two matrices. This |
561 |
* operation is defined in: |
562 |
* |
563 |
* W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," |
564 |
* CCP5 Newsletter No 46., pp. 18-30. |
565 |
* |
566 |
* Equation 21 defines: |
567 |
* \f[ |
568 |
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
569 |
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
570 |
* \f] |
571 |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
572 |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
573 |
* and \f[\alpha + 2 = 1 \f] ). |
574 |
* |
575 |
* @param t1 first matrix |
576 |
* @param t2 second matrix |
577 |
* @return the cross product (vector product) of t1 and t2 |
578 |
*/ |
579 |
template<typename Real, unsigned int Row, unsigned int Col> |
580 |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) { |
581 |
Vector<Real, Row> result; |
582 |
unsigned int i1; |
583 |
unsigned int i2; |
584 |
|
585 |
for (unsigned int i = 0; i < Row; i++) { |
586 |
//for (unsigned int i = 0; i < Col; i++) { |
587 |
i1 = (i+1)%Row; |
588 |
i2 = (i+2)%Row; |
589 |
//i1 = (i+1)%Col; |
590 |
//i2 = (i+2)%Col; |
591 |
for (unsigned int j =0; j < Col; j++) { |
592 |
//for (unsigned int j =0; j < Row; j++) { |
593 |
result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
594 |
//result[i] = t1(j,i1) * t2(j,i2) - t1(j,i2) * t2(j,i1); |
595 |
} |
596 |
} |
597 |
|
598 |
return result; |
599 |
} |
600 |
|
601 |
|
602 |
/** |
603 |
* Write to an output stream |
604 |
*/ |
605 |
template<typename Real, unsigned int Row, unsigned int Col> |
606 |
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
607 |
for (unsigned int i = 0; i < Row ; i++) { |
608 |
o << "("; |
609 |
for (unsigned int j = 0; j < Col ; j++) { |
610 |
o << m(i, j); |
611 |
if (j != Col -1) |
612 |
o << "\t"; |
613 |
} |
614 |
o << ")" << std::endl; |
615 |
} |
616 |
return o; |
617 |
} |
618 |
} |
619 |
#endif //MATH_RECTMATRIX_HPP |