1 |
tim |
71 |
/* |
2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
|
|
* |
4 |
|
|
* Contact: oopse@oopse.org |
5 |
|
|
* |
6 |
|
|
* This program is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
9 |
|
|
* of the License, or (at your option) any later version. |
10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
13 |
|
|
* with programs based on this work. |
14 |
|
|
* |
15 |
|
|
* This program is distributed in the hope that it will be useful, |
16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
|
|
* GNU Lesser General Public License for more details. |
19 |
|
|
* |
20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
21 |
|
|
* along with this program; if not, write to the Free Software |
22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
23 |
|
|
* |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
/** |
28 |
|
|
* @file RectMatrix.hpp |
29 |
|
|
* @author Teng Lin |
30 |
|
|
* @date 10/11/2004 |
31 |
|
|
* @version 1.0 |
32 |
|
|
*/ |
33 |
|
|
|
34 |
|
|
#ifndef MATH_RECTMATRIX_HPP |
35 |
|
|
#define MATH_RECTMATRIX_HPP |
36 |
|
|
|
37 |
tim |
74 |
#include <cmath> |
38 |
tim |
71 |
#include "Vector.hpp" |
39 |
|
|
|
40 |
|
|
namespace oopse { |
41 |
|
|
|
42 |
|
|
/** |
43 |
|
|
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
44 |
|
|
* @brief rectangular matrix class |
45 |
|
|
*/ |
46 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
47 |
|
|
class RectMatrix { |
48 |
|
|
public: |
49 |
tim |
137 |
typedef Real ElemType; |
50 |
|
|
typedef Real* ElemPoinerType; |
51 |
|
|
|
52 |
|
|
/** default constructor */ |
53 |
|
|
RectMatrix() { |
54 |
|
|
for (unsigned int i = 0; i < Row; i++) |
55 |
|
|
for (unsigned int j = 0; j < Col; j++) |
56 |
|
|
data_[i][j] = 0.0; |
57 |
|
|
} |
58 |
tim |
71 |
|
59 |
tim |
137 |
/** Constructs and initializes every element of this matrix to a scalar */ |
60 |
|
|
RectMatrix(Real s) { |
61 |
|
|
for (unsigned int i = 0; i < Row; i++) |
62 |
|
|
for (unsigned int j = 0; j < Col; j++) |
63 |
|
|
data_[i][j] = s; |
64 |
|
|
} |
65 |
tim |
71 |
|
66 |
tim |
151 |
RectMatrix(Real* array) { |
67 |
|
|
for (unsigned int i = 0; i < Row; i++) |
68 |
|
|
for (unsigned int j = 0; j < Col; j++) |
69 |
|
|
data_[i][j] = array[i * Row + j]; |
70 |
|
|
} |
71 |
|
|
|
72 |
tim |
137 |
/** copy constructor */ |
73 |
|
|
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
74 |
|
|
*this = m; |
75 |
|
|
} |
76 |
|
|
|
77 |
|
|
/** destructor*/ |
78 |
|
|
~RectMatrix() {} |
79 |
tim |
71 |
|
80 |
tim |
137 |
/** copy assignment operator */ |
81 |
|
|
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
82 |
|
|
if (this == &m) |
83 |
|
|
return *this; |
84 |
|
|
|
85 |
|
|
for (unsigned int i = 0; i < Row; i++) |
86 |
|
|
for (unsigned int j = 0; j < Col; j++) |
87 |
|
|
data_[i][j] = m.data_[i][j]; |
88 |
tim |
71 |
return *this; |
89 |
tim |
137 |
} |
90 |
tim |
71 |
|
91 |
tim |
137 |
/** |
92 |
|
|
* Return the reference of a single element of this matrix. |
93 |
|
|
* @return the reference of a single element of this matrix |
94 |
|
|
* @param i row index |
95 |
|
|
* @param j colum index |
96 |
|
|
*/ |
97 |
|
|
Real& operator()(unsigned int i, unsigned int j) { |
98 |
|
|
//assert( i < Row && j < Col); |
99 |
|
|
return data_[i][j]; |
100 |
|
|
} |
101 |
tim |
71 |
|
102 |
tim |
137 |
/** |
103 |
|
|
* Return the value of a single element of this matrix. |
104 |
|
|
* @return the value of a single element of this matrix |
105 |
|
|
* @param i row index |
106 |
|
|
* @param j colum index |
107 |
|
|
*/ |
108 |
|
|
Real operator()(unsigned int i, unsigned int j) const { |
109 |
|
|
|
110 |
|
|
return data_[i][j]; |
111 |
|
|
} |
112 |
tim |
71 |
|
113 |
tim |
151 |
/** |
114 |
|
|
* Copy the internal data to an array |
115 |
|
|
* @param array the pointer of destination array |
116 |
|
|
*/ |
117 |
|
|
void getArray(Real* array) { |
118 |
|
|
for (unsigned int i = 0; i < Row; i++) { |
119 |
|
|
for (unsigned int j = 0; j < Col; j++) { |
120 |
|
|
array[i * Row + j] = data_[i][j]; |
121 |
|
|
} |
122 |
|
|
} |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
|
126 |
tim |
137 |
/** Returns the pointer of internal array */ |
127 |
|
|
Real* getArrayPointer() { |
128 |
|
|
return &data_[0][0]; |
129 |
|
|
} |
130 |
tim |
71 |
|
131 |
tim |
137 |
/** |
132 |
|
|
* Returns a row of this matrix as a vector. |
133 |
|
|
* @return a row of this matrix as a vector |
134 |
|
|
* @param row the row index |
135 |
|
|
*/ |
136 |
|
|
Vector<Real, Row> getRow(unsigned int row) { |
137 |
|
|
Vector<Real, Row> v; |
138 |
tim |
71 |
|
139 |
tim |
137 |
for (unsigned int i = 0; i < Row; i++) |
140 |
|
|
v[i] = data_[row][i]; |
141 |
tim |
71 |
|
142 |
tim |
137 |
return v; |
143 |
|
|
} |
144 |
tim |
71 |
|
145 |
tim |
137 |
/** |
146 |
|
|
* Sets a row of this matrix |
147 |
|
|
* @param row the row index |
148 |
|
|
* @param v the vector to be set |
149 |
|
|
*/ |
150 |
|
|
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
151 |
tim |
71 |
|
152 |
tim |
137 |
for (unsigned int i = 0; i < Row; i++) |
153 |
|
|
data_[row][i] = v[i]; |
154 |
|
|
} |
155 |
tim |
71 |
|
156 |
tim |
137 |
/** |
157 |
|
|
* Returns a column of this matrix as a vector. |
158 |
|
|
* @return a column of this matrix as a vector |
159 |
|
|
* @param col the column index |
160 |
|
|
*/ |
161 |
|
|
Vector<Real, Col> getColum(unsigned int col) { |
162 |
|
|
Vector<Real, Col> v; |
163 |
tim |
71 |
|
164 |
tim |
137 |
for (unsigned int j = 0; j < Col; j++) |
165 |
|
|
v[j] = data_[j][col]; |
166 |
tim |
71 |
|
167 |
tim |
137 |
return v; |
168 |
|
|
} |
169 |
tim |
71 |
|
170 |
tim |
137 |
/** |
171 |
|
|
* Sets a column of this matrix |
172 |
|
|
* @param col the column index |
173 |
|
|
* @param v the vector to be set |
174 |
|
|
*/ |
175 |
|
|
void setColum(unsigned int col, const Vector<Real, Col>& v){ |
176 |
tim |
71 |
|
177 |
tim |
137 |
for (unsigned int j = 0; j < Col; j++) |
178 |
|
|
data_[j][col] = v[j]; |
179 |
|
|
} |
180 |
tim |
101 |
|
181 |
tim |
137 |
/** |
182 |
|
|
* swap two rows of this matrix |
183 |
|
|
* @param i the first row |
184 |
|
|
* @param j the second row |
185 |
|
|
*/ |
186 |
|
|
void swapRow(unsigned int i, unsigned int j){ |
187 |
|
|
assert(i < Row && j < Row); |
188 |
tim |
101 |
|
189 |
tim |
137 |
for (unsigned int k = 0; k < Col; k++) |
190 |
|
|
std::swap(data_[i][k], data_[j][k]); |
191 |
|
|
} |
192 |
tim |
101 |
|
193 |
tim |
137 |
/** |
194 |
|
|
* swap two colums of this matrix |
195 |
|
|
* @param i the first colum |
196 |
|
|
* @param j the second colum |
197 |
|
|
*/ |
198 |
|
|
void swapColum(unsigned int i, unsigned int j){ |
199 |
|
|
assert(i < Col && j < Col); |
200 |
|
|
|
201 |
|
|
for (unsigned int k = 0; k < Row; k++) |
202 |
|
|
std::swap(data_[k][i], data_[k][j]); |
203 |
|
|
} |
204 |
tim |
71 |
|
205 |
tim |
137 |
/** |
206 |
|
|
* Tests if this matrix is identical to matrix m |
207 |
|
|
* @return true if this matrix is equal to the matrix m, return false otherwise |
208 |
|
|
* @m matrix to be compared |
209 |
|
|
* |
210 |
|
|
* @todo replace operator == by template function equal |
211 |
|
|
*/ |
212 |
|
|
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
213 |
|
|
for (unsigned int i = 0; i < Row; i++) |
214 |
|
|
for (unsigned int j = 0; j < Col; j++) |
215 |
|
|
if (!equal(data_[i][j], m.data_[i][j])) |
216 |
|
|
return false; |
217 |
tim |
71 |
|
218 |
tim |
137 |
return true; |
219 |
|
|
} |
220 |
tim |
71 |
|
221 |
tim |
137 |
/** |
222 |
|
|
* Tests if this matrix is not equal to matrix m |
223 |
|
|
* @return true if this matrix is not equal to the matrix m, return false otherwise |
224 |
|
|
* @m matrix to be compared |
225 |
|
|
*/ |
226 |
|
|
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
227 |
|
|
return !(*this == m); |
228 |
|
|
} |
229 |
tim |
71 |
|
230 |
tim |
137 |
/** Negates the value of this matrix in place. */ |
231 |
|
|
inline void negate() { |
232 |
|
|
for (unsigned int i = 0; i < Row; i++) |
233 |
|
|
for (unsigned int j = 0; j < Col; j++) |
234 |
|
|
data_[i][j] = -data_[i][j]; |
235 |
|
|
} |
236 |
|
|
|
237 |
|
|
/** |
238 |
|
|
* Sets the value of this matrix to the negation of matrix m. |
239 |
|
|
* @param m the source matrix |
240 |
|
|
*/ |
241 |
|
|
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
242 |
|
|
for (unsigned int i = 0; i < Row; i++) |
243 |
|
|
for (unsigned int j = 0; j < Col; j++) |
244 |
|
|
data_[i][j] = -m.data_[i][j]; |
245 |
|
|
} |
246 |
|
|
|
247 |
|
|
/** |
248 |
|
|
* Sets the value of this matrix to the sum of itself and m (*this += m). |
249 |
|
|
* @param m the other matrix |
250 |
|
|
*/ |
251 |
|
|
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
252 |
|
|
for (unsigned int i = 0; i < Row; i++) |
253 |
|
|
for (unsigned int j = 0; j < Col; j++) |
254 |
|
|
data_[i][j] += m.data_[i][j]; |
255 |
|
|
} |
256 |
|
|
|
257 |
|
|
/** |
258 |
|
|
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
259 |
|
|
* @param m1 the first matrix |
260 |
|
|
* @param m2 the second matrix |
261 |
|
|
*/ |
262 |
|
|
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
263 |
|
|
for (unsigned int i = 0; i < Row; i++) |
264 |
|
|
for (unsigned int j = 0; j < Col; j++) |
265 |
|
|
data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
266 |
|
|
} |
267 |
|
|
|
268 |
|
|
/** |
269 |
|
|
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
270 |
|
|
* @param m the other matrix |
271 |
|
|
*/ |
272 |
|
|
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
273 |
|
|
for (unsigned int i = 0; i < Row; i++) |
274 |
|
|
for (unsigned int j = 0; j < Col; j++) |
275 |
|
|
data_[i][j] -= m.data_[i][j]; |
276 |
|
|
} |
277 |
|
|
|
278 |
|
|
/** |
279 |
|
|
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
280 |
|
|
* @param m1 the first matrix |
281 |
|
|
* @param m2 the second matrix |
282 |
|
|
*/ |
283 |
|
|
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
284 |
|
|
for (unsigned int i = 0; i < Row; i++) |
285 |
|
|
for (unsigned int j = 0; j < Col; j++) |
286 |
|
|
data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
287 |
|
|
} |
288 |
tim |
71 |
|
289 |
tim |
137 |
/** |
290 |
|
|
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
291 |
|
|
* @param s the scalar value |
292 |
|
|
*/ |
293 |
|
|
inline void mul( Real s ) { |
294 |
|
|
for (unsigned int i = 0; i < Row; i++) |
295 |
|
|
for (unsigned int j = 0; j < Col; j++) |
296 |
|
|
data_[i][j] *= s; |
297 |
|
|
} |
298 |
tim |
71 |
|
299 |
tim |
137 |
/** |
300 |
|
|
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
301 |
|
|
* @param s the scalar value |
302 |
|
|
* @param m the matrix |
303 |
|
|
*/ |
304 |
|
|
inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { |
305 |
|
|
for (unsigned int i = 0; i < Row; i++) |
306 |
|
|
for (unsigned int j = 0; j < Col; j++) |
307 |
|
|
data_[i][j] = s * m.data_[i][j]; |
308 |
|
|
} |
309 |
tim |
71 |
|
310 |
tim |
137 |
/** |
311 |
|
|
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
312 |
|
|
* @param s the scalar value |
313 |
|
|
*/ |
314 |
|
|
inline void div( Real s) { |
315 |
|
|
for (unsigned int i = 0; i < Row; i++) |
316 |
|
|
for (unsigned int j = 0; j < Col; j++) |
317 |
|
|
data_[i][j] /= s; |
318 |
|
|
} |
319 |
tim |
71 |
|
320 |
tim |
137 |
/** |
321 |
|
|
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
322 |
|
|
* @param s the scalar value |
323 |
|
|
* @param m the matrix |
324 |
|
|
*/ |
325 |
|
|
inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { |
326 |
|
|
for (unsigned int i = 0; i < Row; i++) |
327 |
|
|
for (unsigned int j = 0; j < Col; j++) |
328 |
|
|
data_[i][j] = m.data_[i][j] / s; |
329 |
|
|
} |
330 |
tim |
71 |
|
331 |
tim |
137 |
/** |
332 |
|
|
* Multiples a scalar into every element of this matrix. |
333 |
|
|
* @param s the scalar value |
334 |
|
|
*/ |
335 |
|
|
RectMatrix<Real, Row, Col>& operator *=(const Real s) { |
336 |
|
|
this->mul(s); |
337 |
|
|
return *this; |
338 |
|
|
} |
339 |
tim |
71 |
|
340 |
tim |
137 |
/** |
341 |
|
|
* Divides every element of this matrix by a scalar. |
342 |
|
|
* @param s the scalar value |
343 |
|
|
*/ |
344 |
|
|
RectMatrix<Real, Row, Col>& operator /=(const Real s) { |
345 |
|
|
this->div(s); |
346 |
|
|
return *this; |
347 |
|
|
} |
348 |
tim |
71 |
|
349 |
tim |
137 |
/** |
350 |
|
|
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
351 |
|
|
* @param m the other matrix |
352 |
|
|
*/ |
353 |
|
|
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
354 |
|
|
add(m); |
355 |
|
|
return *this; |
356 |
|
|
} |
357 |
tim |
71 |
|
358 |
tim |
137 |
/** |
359 |
|
|
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
360 |
|
|
* @param m the other matrix |
361 |
|
|
*/ |
362 |
|
|
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
363 |
|
|
sub(m); |
364 |
|
|
return *this; |
365 |
|
|
} |
366 |
tim |
71 |
|
367 |
tim |
137 |
/** Return the transpose of this matrix */ |
368 |
|
|
RectMatrix<Real, Col, Row> transpose(){ |
369 |
|
|
RectMatrix<Real, Col, Row> result; |
370 |
|
|
|
371 |
|
|
for (unsigned int i = 0; i < Row; i++) |
372 |
|
|
for (unsigned int j = 0; j < Col; j++) |
373 |
|
|
result(j, i) = data_[i][j]; |
374 |
|
|
|
375 |
|
|
return result; |
376 |
|
|
} |
377 |
tim |
71 |
|
378 |
|
|
protected: |
379 |
|
|
Real data_[Row][Col]; |
380 |
|
|
}; |
381 |
|
|
|
382 |
|
|
/** Negate the value of every element of this matrix. */ |
383 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
384 |
|
|
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
385 |
|
|
RectMatrix<Real, Row, Col> result(m); |
386 |
|
|
|
387 |
|
|
result.negate(); |
388 |
|
|
|
389 |
|
|
return result; |
390 |
|
|
} |
391 |
|
|
|
392 |
|
|
/** |
393 |
|
|
* Return the sum of two matrixes (m1 + m2). |
394 |
|
|
* @return the sum of two matrixes |
395 |
|
|
* @param m1 the first matrix |
396 |
|
|
* @param m2 the second matrix |
397 |
|
|
*/ |
398 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
399 |
|
|
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
400 |
|
|
RectMatrix<Real, Row, Col> result; |
401 |
|
|
|
402 |
|
|
result.add(m1, m2); |
403 |
|
|
|
404 |
|
|
return result; |
405 |
|
|
} |
406 |
|
|
|
407 |
|
|
/** |
408 |
|
|
* Return the difference of two matrixes (m1 - m2). |
409 |
|
|
* @return the sum of two matrixes |
410 |
|
|
* @param m1 the first matrix |
411 |
|
|
* @param m2 the second matrix |
412 |
|
|
*/ |
413 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
414 |
|
|
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
415 |
|
|
RectMatrix<Real, Row, Col> result; |
416 |
|
|
|
417 |
|
|
result.sub(m1, m2); |
418 |
|
|
|
419 |
|
|
return result; |
420 |
|
|
} |
421 |
|
|
|
422 |
|
|
/** |
423 |
|
|
* Return the multiplication of scalra and matrix (m * s). |
424 |
|
|
* @return the multiplication of a scalra and a matrix |
425 |
|
|
* @param m the matrix |
426 |
|
|
* @param s the scalar |
427 |
|
|
*/ |
428 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
429 |
|
|
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
430 |
|
|
RectMatrix<Real, Row, Col> result; |
431 |
|
|
|
432 |
|
|
result.mul(s, m); |
433 |
|
|
|
434 |
|
|
return result; |
435 |
|
|
} |
436 |
|
|
|
437 |
|
|
/** |
438 |
|
|
* Return the multiplication of a scalra and a matrix (s * m). |
439 |
|
|
* @return the multiplication of a scalra and a matrix |
440 |
|
|
* @param s the scalar |
441 |
|
|
* @param m the matrix |
442 |
|
|
*/ |
443 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
444 |
|
|
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
445 |
|
|
RectMatrix<Real, Row, Col> result; |
446 |
|
|
|
447 |
|
|
result.mul(s, m); |
448 |
|
|
|
449 |
|
|
return result; |
450 |
|
|
} |
451 |
|
|
|
452 |
|
|
/** |
453 |
|
|
* Return the multiplication of two matrixes (m1 * m2). |
454 |
|
|
* @return the multiplication of two matrixes |
455 |
|
|
* @param m1 the first matrix |
456 |
|
|
* @param m2 the second matrix |
457 |
|
|
*/ |
458 |
|
|
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
459 |
|
|
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
460 |
|
|
RectMatrix<Real, Row, Col> result; |
461 |
|
|
|
462 |
|
|
for (unsigned int i = 0; i < Row; i++) |
463 |
|
|
for (unsigned int j = 0; j < Col; j++) |
464 |
|
|
for (unsigned int k = 0; k < SameDim; k++) |
465 |
tim |
76 |
result(i, j) += m1(i, k) * m2(k, j); |
466 |
tim |
71 |
|
467 |
|
|
return result; |
468 |
|
|
} |
469 |
|
|
|
470 |
|
|
/** |
471 |
|
|
* Return the multiplication of a matrix and a vector (m * v). |
472 |
|
|
* @return the multiplication of a matrix and a vector |
473 |
|
|
* @param m the matrix |
474 |
|
|
* @param v the vector |
475 |
|
|
*/ |
476 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
477 |
|
|
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
478 |
|
|
Vector<Real, Row> result; |
479 |
|
|
|
480 |
|
|
for (unsigned int i = 0; i < Row ; i++) |
481 |
|
|
for (unsigned int j = 0; j < Col ; j++) |
482 |
|
|
result[i] += m(i, j) * v[j]; |
483 |
|
|
|
484 |
|
|
return result; |
485 |
|
|
} |
486 |
|
|
|
487 |
|
|
/** |
488 |
|
|
* Return the scalar division of matrix (m / s). |
489 |
|
|
* @return the scalar division of matrix |
490 |
|
|
* @param m the matrix |
491 |
|
|
* @param s the scalar |
492 |
|
|
*/ |
493 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
494 |
|
|
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
495 |
|
|
RectMatrix<Real, Row, Col> result; |
496 |
|
|
|
497 |
|
|
result.div(s, m); |
498 |
|
|
|
499 |
|
|
return result; |
500 |
|
|
} |
501 |
tim |
93 |
|
502 |
|
|
/** |
503 |
|
|
* Write to an output stream |
504 |
|
|
*/ |
505 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
506 |
|
|
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
507 |
|
|
for (unsigned int i = 0; i < Row ; i++) { |
508 |
tim |
110 |
o << "("; |
509 |
tim |
93 |
for (unsigned int j = 0; j < Col ; j++) { |
510 |
tim |
113 |
o << m(i, j); |
511 |
|
|
if (j != Col -1) |
512 |
|
|
o << "\t"; |
513 |
tim |
93 |
} |
514 |
|
|
o << ")" << std::endl; |
515 |
|
|
} |
516 |
|
|
return o; |
517 |
|
|
} |
518 |
tim |
71 |
} |
519 |
|
|
#endif //MATH_RECTMATRIX_HPP |