1 |
tim |
71 |
/* |
2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
|
|
* |
4 |
|
|
* Contact: oopse@oopse.org |
5 |
|
|
* |
6 |
|
|
* This program is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
9 |
|
|
* of the License, or (at your option) any later version. |
10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
13 |
|
|
* with programs based on this work. |
14 |
|
|
* |
15 |
|
|
* This program is distributed in the hope that it will be useful, |
16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
|
|
* GNU Lesser General Public License for more details. |
19 |
|
|
* |
20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
21 |
|
|
* along with this program; if not, write to the Free Software |
22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
23 |
|
|
* |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
/** |
28 |
|
|
* @file RectMatrix.hpp |
29 |
|
|
* @author Teng Lin |
30 |
|
|
* @date 10/11/2004 |
31 |
|
|
* @version 1.0 |
32 |
|
|
*/ |
33 |
|
|
|
34 |
|
|
#ifndef MATH_RECTMATRIX_HPP |
35 |
|
|
#define MATH_RECTMATRIX_HPP |
36 |
|
|
|
37 |
tim |
74 |
#include <cmath> |
38 |
tim |
71 |
#include "Vector.hpp" |
39 |
|
|
|
40 |
|
|
namespace oopse { |
41 |
|
|
|
42 |
|
|
/** |
43 |
|
|
* @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
44 |
|
|
* @brief rectangular matrix class |
45 |
|
|
*/ |
46 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
47 |
|
|
class RectMatrix { |
48 |
|
|
public: |
49 |
|
|
|
50 |
|
|
/** default constructor */ |
51 |
|
|
RectMatrix() { |
52 |
|
|
for (unsigned int i = 0; i < Row; i++) |
53 |
|
|
for (unsigned int j = 0; j < Col; j++) |
54 |
|
|
data_[i][j] = 0.0; |
55 |
|
|
} |
56 |
|
|
|
57 |
|
|
/** Constructs and initializes every element of this matrix to a scalar */ |
58 |
|
|
RectMatrix(Real s) { |
59 |
|
|
for (unsigned int i = 0; i < Row; i++) |
60 |
|
|
for (unsigned int j = 0; j < Col; j++) |
61 |
|
|
data_[i][j] = s; |
62 |
|
|
} |
63 |
|
|
|
64 |
|
|
/** copy constructor */ |
65 |
|
|
RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
66 |
|
|
*this = m; |
67 |
|
|
} |
68 |
|
|
|
69 |
|
|
/** destructor*/ |
70 |
|
|
~RectMatrix() {} |
71 |
|
|
|
72 |
|
|
/** copy assignment operator */ |
73 |
|
|
RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
74 |
|
|
if (this == &m) |
75 |
|
|
return *this; |
76 |
|
|
|
77 |
|
|
for (unsigned int i = 0; i < Row; i++) |
78 |
|
|
for (unsigned int j = 0; j < Col; j++) |
79 |
|
|
data_[i][j] = m.data_[i][j]; |
80 |
|
|
return *this; |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
/** |
84 |
|
|
* Return the reference of a single element of this matrix. |
85 |
|
|
* @return the reference of a single element of this matrix |
86 |
|
|
* @param i row index |
87 |
|
|
* @param j colum index |
88 |
|
|
*/ |
89 |
|
|
double& operator()(unsigned int i, unsigned int j) { |
90 |
|
|
//assert( i < Row && j < Col); |
91 |
|
|
return data_[i][j]; |
92 |
|
|
} |
93 |
|
|
|
94 |
|
|
/** |
95 |
|
|
* Return the value of a single element of this matrix. |
96 |
|
|
* @return the value of a single element of this matrix |
97 |
|
|
* @param i row index |
98 |
|
|
* @param j colum index |
99 |
|
|
*/ |
100 |
|
|
double operator()(unsigned int i, unsigned int j) const { |
101 |
|
|
|
102 |
|
|
return data_[i][j]; |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
/** |
106 |
|
|
* Returns a row of this matrix as a vector. |
107 |
|
|
* @return a row of this matrix as a vector |
108 |
|
|
* @param row the row index |
109 |
|
|
*/ |
110 |
|
|
Vector<Real, Row> getRow(unsigned int row) { |
111 |
|
|
Vector<Real, Row> v; |
112 |
|
|
|
113 |
|
|
for (unsigned int i = 0; i < Row; i++) |
114 |
|
|
v[i] = data_[row][i]; |
115 |
|
|
|
116 |
|
|
return v; |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
/** |
120 |
|
|
* Sets a row of this matrix |
121 |
|
|
* @param row the row index |
122 |
|
|
* @param v the vector to be set |
123 |
|
|
*/ |
124 |
|
|
void setRow(unsigned int row, const Vector<Real, Row>& v) { |
125 |
|
|
|
126 |
|
|
for (unsigned int i = 0; i < Row; i++) |
127 |
|
|
data_[row][i] = v[i]; |
128 |
|
|
} |
129 |
|
|
|
130 |
|
|
/** |
131 |
|
|
* Returns a column of this matrix as a vector. |
132 |
|
|
* @return a column of this matrix as a vector |
133 |
|
|
* @param col the column index |
134 |
|
|
*/ |
135 |
|
|
Vector<Real, Col> getColum(unsigned int col) { |
136 |
|
|
Vector<Real, Col> v; |
137 |
|
|
|
138 |
|
|
for (unsigned int j = 0; j < Col; j++) |
139 |
|
|
v[j] = data_[j][col]; |
140 |
|
|
|
141 |
|
|
return v; |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
/** |
145 |
|
|
* Sets a column of this matrix |
146 |
|
|
* @param col the column index |
147 |
|
|
* @param v the vector to be set |
148 |
|
|
*/ |
149 |
|
|
void setColum(unsigned int col, const Vector<Real, Col>& v){ |
150 |
|
|
|
151 |
|
|
for (unsigned int j = 0; j < Col; j++) |
152 |
|
|
data_[j][col] = v[j]; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
/** |
156 |
tim |
101 |
* swap two rows of this matrix |
157 |
|
|
* @param i the first row |
158 |
|
|
* @param j the second row |
159 |
|
|
*/ |
160 |
|
|
void swapRow(unsigned int i, unsigned int j){ |
161 |
|
|
assert(i < Row && j < Row); |
162 |
|
|
|
163 |
|
|
for (unsigned int k = 0; k < Col; k++) |
164 |
|
|
std::swap(data_[i][k], data_[j][k]); |
165 |
|
|
} |
166 |
|
|
|
167 |
|
|
/** |
168 |
|
|
* swap two colums of this matrix |
169 |
|
|
* @param i the first colum |
170 |
|
|
* @param j the second colum |
171 |
|
|
*/ |
172 |
|
|
void swapColum(unsigned int i, unsigned int j){ |
173 |
|
|
assert(i < Col && j < Col); |
174 |
|
|
|
175 |
|
|
for (unsigned int k = 0; k < Row; k++) |
176 |
|
|
std::swap(data_[k][i], data_[k][j]); |
177 |
|
|
} |
178 |
|
|
|
179 |
|
|
/** |
180 |
tim |
71 |
* Tests if this matrix is identical to matrix m |
181 |
|
|
* @return true if this matrix is equal to the matrix m, return false otherwise |
182 |
|
|
* @m matrix to be compared |
183 |
|
|
* |
184 |
|
|
* @todo replace operator == by template function equal |
185 |
|
|
*/ |
186 |
|
|
bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
187 |
|
|
for (unsigned int i = 0; i < Row; i++) |
188 |
|
|
for (unsigned int j = 0; j < Col; j++) |
189 |
|
|
if (!equal(data_[i][j], m.data_[i][j])) |
190 |
|
|
return false; |
191 |
|
|
|
192 |
|
|
return true; |
193 |
|
|
} |
194 |
|
|
|
195 |
|
|
/** |
196 |
|
|
* Tests if this matrix is not equal to matrix m |
197 |
|
|
* @return true if this matrix is not equal to the matrix m, return false otherwise |
198 |
|
|
* @m matrix to be compared |
199 |
|
|
*/ |
200 |
|
|
bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
201 |
|
|
return !(*this == m); |
202 |
|
|
} |
203 |
|
|
|
204 |
|
|
/** Negates the value of this matrix in place. */ |
205 |
|
|
inline void negate() { |
206 |
|
|
for (unsigned int i = 0; i < Row; i++) |
207 |
|
|
for (unsigned int j = 0; j < Col; j++) |
208 |
|
|
data_[i][j] = -data_[i][j]; |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
/** |
212 |
|
|
* Sets the value of this matrix to the negation of matrix m. |
213 |
|
|
* @param m the source matrix |
214 |
|
|
*/ |
215 |
|
|
inline void negate(const RectMatrix<Real, Row, Col>& m) { |
216 |
|
|
for (unsigned int i = 0; i < Row; i++) |
217 |
|
|
for (unsigned int j = 0; j < Col; j++) |
218 |
|
|
data_[i][j] = -m.data_[i][j]; |
219 |
|
|
} |
220 |
|
|
|
221 |
|
|
/** |
222 |
|
|
* Sets the value of this matrix to the sum of itself and m (*this += m). |
223 |
|
|
* @param m the other matrix |
224 |
|
|
*/ |
225 |
|
|
inline void add( const RectMatrix<Real, Row, Col>& m ) { |
226 |
|
|
for (unsigned int i = 0; i < Row; i++) |
227 |
|
|
for (unsigned int j = 0; j < Col; j++) |
228 |
|
|
data_[i][j] += m.data_[i][j]; |
229 |
|
|
} |
230 |
|
|
|
231 |
|
|
/** |
232 |
|
|
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
233 |
|
|
* @param m1 the first matrix |
234 |
|
|
* @param m2 the second matrix |
235 |
|
|
*/ |
236 |
|
|
inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
237 |
|
|
for (unsigned int i = 0; i < Row; i++) |
238 |
|
|
for (unsigned int j = 0; j < Col; j++) |
239 |
|
|
data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
240 |
|
|
} |
241 |
|
|
|
242 |
|
|
/** |
243 |
|
|
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
244 |
|
|
* @param m the other matrix |
245 |
|
|
*/ |
246 |
|
|
inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
247 |
|
|
for (unsigned int i = 0; i < Row; i++) |
248 |
|
|
for (unsigned int j = 0; j < Col; j++) |
249 |
|
|
data_[i][j] -= m.data_[i][j]; |
250 |
|
|
} |
251 |
|
|
|
252 |
|
|
/** |
253 |
|
|
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
254 |
|
|
* @param m1 the first matrix |
255 |
|
|
* @param m2 the second matrix |
256 |
|
|
*/ |
257 |
|
|
inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
258 |
|
|
for (unsigned int i = 0; i < Row; i++) |
259 |
|
|
for (unsigned int j = 0; j < Col; j++) |
260 |
|
|
data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
/** |
264 |
|
|
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
265 |
|
|
* @param s the scalar value |
266 |
|
|
*/ |
267 |
|
|
inline void mul( double s ) { |
268 |
|
|
for (unsigned int i = 0; i < Row; i++) |
269 |
|
|
for (unsigned int j = 0; j < Col; j++) |
270 |
|
|
data_[i][j] *= s; |
271 |
|
|
} |
272 |
|
|
|
273 |
|
|
/** |
274 |
|
|
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
275 |
|
|
* @param s the scalar value |
276 |
|
|
* @param m the matrix |
277 |
|
|
*/ |
278 |
|
|
inline void mul( double s, const RectMatrix<Real, Row, Col>& m ) { |
279 |
|
|
for (unsigned int i = 0; i < Row; i++) |
280 |
|
|
for (unsigned int j = 0; j < Col; j++) |
281 |
|
|
data_[i][j] = s * m.data_[i][j]; |
282 |
|
|
} |
283 |
|
|
|
284 |
|
|
/** |
285 |
|
|
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
286 |
|
|
* @param s the scalar value |
287 |
|
|
*/ |
288 |
|
|
inline void div( double s) { |
289 |
|
|
for (unsigned int i = 0; i < Row; i++) |
290 |
|
|
for (unsigned int j = 0; j < Col; j++) |
291 |
|
|
data_[i][j] /= s; |
292 |
|
|
} |
293 |
|
|
|
294 |
|
|
/** |
295 |
|
|
* Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
296 |
|
|
* @param s the scalar value |
297 |
|
|
* @param m the matrix |
298 |
|
|
*/ |
299 |
|
|
inline void div( double s, const RectMatrix<Real, Row, Col>& m ) { |
300 |
|
|
for (unsigned int i = 0; i < Row; i++) |
301 |
|
|
for (unsigned int j = 0; j < Col; j++) |
302 |
|
|
data_[i][j] = m.data_[i][j] / s; |
303 |
|
|
} |
304 |
|
|
|
305 |
|
|
/** |
306 |
|
|
* Multiples a scalar into every element of this matrix. |
307 |
|
|
* @param s the scalar value |
308 |
|
|
*/ |
309 |
|
|
RectMatrix<Real, Row, Col>& operator *=(const double s) { |
310 |
|
|
this->mul(s); |
311 |
|
|
return *this; |
312 |
|
|
} |
313 |
|
|
|
314 |
|
|
/** |
315 |
|
|
* Divides every element of this matrix by a scalar. |
316 |
|
|
* @param s the scalar value |
317 |
|
|
*/ |
318 |
|
|
RectMatrix<Real, Row, Col>& operator /=(const double s) { |
319 |
|
|
this->div(s); |
320 |
|
|
return *this; |
321 |
|
|
} |
322 |
|
|
|
323 |
|
|
/** |
324 |
|
|
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
325 |
|
|
* @param m the other matrix |
326 |
|
|
*/ |
327 |
|
|
RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
328 |
|
|
add(m); |
329 |
|
|
return *this; |
330 |
|
|
} |
331 |
|
|
|
332 |
|
|
/** |
333 |
|
|
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
334 |
|
|
* @param m the other matrix |
335 |
|
|
*/ |
336 |
|
|
RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
337 |
|
|
sub(m); |
338 |
|
|
return *this; |
339 |
|
|
} |
340 |
|
|
|
341 |
|
|
/** Return the transpose of this matrix */ |
342 |
|
|
RectMatrix<Real, Col, Row> transpose(){ |
343 |
|
|
RectMatrix<Real, Col, Row> result; |
344 |
|
|
|
345 |
|
|
for (unsigned int i = 0; i < Row; i++) |
346 |
|
|
for (unsigned int j = 0; j < Col; j++) |
347 |
|
|
result(j, i) = data_[i][j]; |
348 |
|
|
|
349 |
|
|
return result; |
350 |
|
|
} |
351 |
|
|
|
352 |
|
|
protected: |
353 |
|
|
Real data_[Row][Col]; |
354 |
|
|
}; |
355 |
|
|
|
356 |
|
|
/** Negate the value of every element of this matrix. */ |
357 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
358 |
|
|
inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
359 |
|
|
RectMatrix<Real, Row, Col> result(m); |
360 |
|
|
|
361 |
|
|
result.negate(); |
362 |
|
|
|
363 |
|
|
return result; |
364 |
|
|
} |
365 |
|
|
|
366 |
|
|
/** |
367 |
|
|
* Return the sum of two matrixes (m1 + m2). |
368 |
|
|
* @return the sum of two matrixes |
369 |
|
|
* @param m1 the first matrix |
370 |
|
|
* @param m2 the second matrix |
371 |
|
|
*/ |
372 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
373 |
|
|
inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
374 |
|
|
RectMatrix<Real, Row, Col> result; |
375 |
|
|
|
376 |
|
|
result.add(m1, m2); |
377 |
|
|
|
378 |
|
|
return result; |
379 |
|
|
} |
380 |
|
|
|
381 |
|
|
/** |
382 |
|
|
* Return the difference of two matrixes (m1 - m2). |
383 |
|
|
* @return the sum of two matrixes |
384 |
|
|
* @param m1 the first matrix |
385 |
|
|
* @param m2 the second matrix |
386 |
|
|
*/ |
387 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
388 |
|
|
inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
389 |
|
|
RectMatrix<Real, Row, Col> result; |
390 |
|
|
|
391 |
|
|
result.sub(m1, m2); |
392 |
|
|
|
393 |
|
|
return result; |
394 |
|
|
} |
395 |
|
|
|
396 |
|
|
/** |
397 |
|
|
* Return the multiplication of scalra and matrix (m * s). |
398 |
|
|
* @return the multiplication of a scalra and a matrix |
399 |
|
|
* @param m the matrix |
400 |
|
|
* @param s the scalar |
401 |
|
|
*/ |
402 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
403 |
|
|
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
404 |
|
|
RectMatrix<Real, Row, Col> result; |
405 |
|
|
|
406 |
|
|
result.mul(s, m); |
407 |
|
|
|
408 |
|
|
return result; |
409 |
|
|
} |
410 |
|
|
|
411 |
|
|
/** |
412 |
|
|
* Return the multiplication of a scalra and a matrix (s * m). |
413 |
|
|
* @return the multiplication of a scalra and a matrix |
414 |
|
|
* @param s the scalar |
415 |
|
|
* @param m the matrix |
416 |
|
|
*/ |
417 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
418 |
|
|
inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
419 |
|
|
RectMatrix<Real, Row, Col> result; |
420 |
|
|
|
421 |
|
|
result.mul(s, m); |
422 |
|
|
|
423 |
|
|
return result; |
424 |
|
|
} |
425 |
|
|
|
426 |
|
|
/** |
427 |
|
|
* Return the multiplication of two matrixes (m1 * m2). |
428 |
|
|
* @return the multiplication of two matrixes |
429 |
|
|
* @param m1 the first matrix |
430 |
|
|
* @param m2 the second matrix |
431 |
|
|
*/ |
432 |
|
|
template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
433 |
|
|
inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
434 |
|
|
RectMatrix<Real, Row, Col> result; |
435 |
|
|
|
436 |
|
|
for (unsigned int i = 0; i < Row; i++) |
437 |
|
|
for (unsigned int j = 0; j < Col; j++) |
438 |
|
|
for (unsigned int k = 0; k < SameDim; k++) |
439 |
tim |
76 |
result(i, j) += m1(i, k) * m2(k, j); |
440 |
tim |
71 |
|
441 |
|
|
return result; |
442 |
|
|
} |
443 |
|
|
|
444 |
|
|
/** |
445 |
|
|
* Return the multiplication of a matrix and a vector (m * v). |
446 |
|
|
* @return the multiplication of a matrix and a vector |
447 |
|
|
* @param m the matrix |
448 |
|
|
* @param v the vector |
449 |
|
|
*/ |
450 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
451 |
|
|
inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
452 |
|
|
Vector<Real, Row> result; |
453 |
|
|
|
454 |
|
|
for (unsigned int i = 0; i < Row ; i++) |
455 |
|
|
for (unsigned int j = 0; j < Col ; j++) |
456 |
|
|
result[i] += m(i, j) * v[j]; |
457 |
|
|
|
458 |
|
|
return result; |
459 |
|
|
} |
460 |
|
|
|
461 |
|
|
/** |
462 |
|
|
* Return the scalar division of matrix (m / s). |
463 |
|
|
* @return the scalar division of matrix |
464 |
|
|
* @param m the matrix |
465 |
|
|
* @param s the scalar |
466 |
|
|
*/ |
467 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
468 |
|
|
inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
469 |
|
|
RectMatrix<Real, Row, Col> result; |
470 |
|
|
|
471 |
|
|
result.div(s, m); |
472 |
|
|
|
473 |
|
|
return result; |
474 |
|
|
} |
475 |
tim |
93 |
|
476 |
|
|
/** |
477 |
|
|
* Write to an output stream |
478 |
|
|
*/ |
479 |
|
|
template<typename Real, unsigned int Row, unsigned int Col> |
480 |
|
|
std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
481 |
|
|
for (unsigned int i = 0; i < Row ; i++) { |
482 |
tim |
110 |
o << "("; |
483 |
tim |
93 |
for (unsigned int j = 0; j < Col ; j++) { |
484 |
tim |
113 |
o << m(i, j); |
485 |
|
|
if (j != Col -1) |
486 |
|
|
o << "\t"; |
487 |
tim |
93 |
} |
488 |
|
|
o << ")" << std::endl; |
489 |
|
|
} |
490 |
|
|
return o; |
491 |
|
|
} |
492 |
tim |
71 |
} |
493 |
|
|
#endif //MATH_RECTMATRIX_HPP |