1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <cmath> |
44 |
#include <limits> |
45 |
#include "math/RealSphericalHarmonic.hpp" |
46 |
|
47 |
using namespace OpenMD; |
48 |
|
49 |
RealSphericalHarmonic::RealSphericalHarmonic() { |
50 |
} |
51 |
|
52 |
RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
53 |
|
54 |
RealType p, phase; |
55 |
|
56 |
// associated Legendre polynomial |
57 |
p = LegendreP(L,M,costheta); |
58 |
|
59 |
if (functionType == RSH_SIN) { |
60 |
phase = sin((RealType)M * phi); |
61 |
} else { |
62 |
phase = cos((RealType)M * phi); |
63 |
} |
64 |
|
65 |
return coefficient*p*phase; |
66 |
|
67 |
} |
68 |
|
69 |
//---------------------------------------------------------------------------// |
70 |
// |
71 |
// RealType LegendreP (int l, int m, RealType x); |
72 |
// |
73 |
// Computes the value of the associated Legendre polynomial P_lm (x) |
74 |
// of order l at a given point. |
75 |
// |
76 |
// Input: |
77 |
// l = degree of the polynomial >= 0 |
78 |
// m = parameter satisfying 0 <= m <= l, |
79 |
// x = point in which the computation is performed, range -1 <= x <= 1. |
80 |
// Returns: |
81 |
// value of the polynomial in x |
82 |
// |
83 |
//---------------------------------------------------------------------------// |
84 |
RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { |
85 |
// check parameters |
86 |
if (m < 0 || m > l || fabs(x) > 1.0) { |
87 |
printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
88 |
// return NAN; |
89 |
return std::numeric_limits <RealType>:: quiet_NaN(); |
90 |
} |
91 |
|
92 |
RealType pmm = 1.0; |
93 |
if (m > 0) { |
94 |
RealType h = sqrt((1.0-x)*(1.0+x)), |
95 |
f = 1.0; |
96 |
for (int i = 1; i <= m; i++) { |
97 |
pmm *= -f * h; |
98 |
f += 2.0; |
99 |
} |
100 |
} |
101 |
if (l == m) |
102 |
return pmm; |
103 |
else { |
104 |
RealType pmmp1 = x * (2 * m + 1) * pmm; |
105 |
if (l == (m+1)) |
106 |
return pmmp1; |
107 |
else { |
108 |
RealType pll = 0.0; |
109 |
for (int ll = m+2; ll <= l; ll++) { |
110 |
pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
111 |
pmm = pmmp1; |
112 |
pmmp1 = pll; |
113 |
} |
114 |
return pll; |
115 |
} |
116 |
} |
117 |
} |
118 |
|