6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <stdio.h> |
45 |
|
#include <limits> |
46 |
|
#include "math/RealSphericalHarmonic.hpp" |
47 |
|
|
48 |
< |
using namespace oopse; |
48 |
> |
using namespace OpenMD; |
49 |
|
|
50 |
|
RealSphericalHarmonic::RealSphericalHarmonic() { |
51 |
|
} |
52 |
|
|
53 |
< |
double RealSphericalHarmonic::getValueAt(double costheta, double phi) { |
53 |
> |
RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
54 |
|
|
55 |
< |
double p, phase; |
55 |
> |
RealType p, phase; |
56 |
|
|
57 |
|
// associated Legendre polynomial |
58 |
|
p = LegendreP(L,M,costheta); |
59 |
|
|
60 |
|
if (functionType == RSH_SIN) { |
61 |
< |
phase = sin((double)M * phi); |
61 |
> |
phase = sin((RealType)M * phi); |
62 |
|
} else { |
63 |
< |
phase = cos((double)M * phi); |
63 |
> |
phase = cos((RealType)M * phi); |
64 |
|
} |
65 |
|
|
66 |
|
return coefficient*p*phase; |
69 |
|
|
70 |
|
//---------------------------------------------------------------------------// |
71 |
|
// |
72 |
< |
// double LegendreP (int l, int m, double x); |
72 |
> |
// RealType LegendreP (int l, int m, RealType x); |
73 |
|
// |
74 |
|
// Computes the value of the associated Legendre polynomial P_lm (x) |
75 |
|
// of order l at a given point. |
82 |
|
// value of the polynomial in x |
83 |
|
// |
84 |
|
//---------------------------------------------------------------------------// |
85 |
< |
double RealSphericalHarmonic::LegendreP (int l, int m, double x) { |
85 |
> |
RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { |
86 |
|
// check parameters |
87 |
|
if (m < 0 || m > l || fabs(x) > 1.0) { |
88 |
|
printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
89 |
|
// return NAN; |
90 |
< |
return std::numeric_limits <double>:: quiet_NaN(); |
90 |
> |
return std::numeric_limits <RealType>:: quiet_NaN(); |
91 |
|
} |
92 |
|
|
93 |
< |
double pmm = 1.0; |
93 |
> |
RealType pmm = 1.0; |
94 |
|
if (m > 0) { |
95 |
< |
double h = sqrt((1.0-x)*(1.0+x)), |
95 |
> |
RealType h = sqrt((1.0-x)*(1.0+x)), |
96 |
|
f = 1.0; |
97 |
|
for (int i = 1; i <= m; i++) { |
98 |
|
pmm *= -f * h; |
102 |
|
if (l == m) |
103 |
|
return pmm; |
104 |
|
else { |
105 |
< |
double pmmp1 = x * (2 * m + 1) * pmm; |
105 |
> |
RealType pmmp1 = x * (2 * m + 1) * pmm; |
106 |
|
if (l == (m+1)) |
107 |
|
return pmmp1; |
108 |
|
else { |
109 |
< |
double pll = 0.0; |
109 |
> |
RealType pll = 0.0; |
110 |
|
for (int ll = m+2; ll <= l; ll++) { |
111 |
|
pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
112 |
|
pmm = pmmp1; |