ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Quaternion.hpp
(Generate patch)

Comparing:
trunk/src/math/Quaternion.hpp (file contents), Revision 92 by tim, Sat Oct 16 01:31:28 2004 UTC vs.
branches/development/src/math/Quaternion.hpp (file contents), Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file Quaternion.hpp
45   * @author Teng Lin
# Line 32 | Line 49
49  
50   #ifndef MATH_QUATERNION_HPP
51   #define MATH_QUATERNION_HPP
52 + #include "config.h"
53 + #include <cmath>
54  
55 < namespace oopse{
55 > #include "math/Vector3.hpp"
56 > #include "math/SquareMatrix.hpp"
57 > #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
58 > const RealType tiny=1.0e-6;    
59  
60 + namespace OpenMD{
61 +
62 +  /**
63 +   * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
64 +   * Quaternion is a sort of a higher-level complex number.
65 +   * It is defined as Q = w + x*i + y*j + z*k,
66 +   * where w, x, y, and z are numbers of type T (e.g. RealType), and
67 +   * i*i = -1; j*j = -1; k*k = -1;
68 +   * i*j = k; j*k = i; k*i = j;
69 +   */
70 +  template<typename Real>
71 +  class Quaternion : public Vector<Real, 4> {
72 +
73 +  public:
74 +    Quaternion() : Vector<Real, 4>() {}
75 +
76 +    /** Constructs and initializes a Quaternion from w, x, y, z values */    
77 +    Quaternion(Real w, Real x, Real y, Real z) {
78 +      this->data_[0] = w;
79 +      this->data_[1] = x;
80 +      this->data_[2] = y;
81 +      this->data_[3] = z;                
82 +    }
83 +            
84 +    /** Constructs and initializes a Quaternion from a  Vector<Real,4> */    
85 +    Quaternion(const Vector<Real,4>& v)
86 +      : Vector<Real, 4>(v){
87 +    }
88 +
89 +    /** copy assignment */
90 +    Quaternion& operator =(const Vector<Real, 4>& v){
91 +      if (this == & v)
92 +        return *this;
93 +      
94 +      Vector<Real, 4>::operator=(v);
95 +      
96 +      return *this;
97 +    }
98 +    
99      /**
100 <     * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
101 <     * @brief
100 >     * Returns the value of the first element of this quaternion.
101 >     * @return the value of the first element of this quaternion
102       */
103 <    template<typename Real>
104 <    class Quaternion : public Vector<Real, 4> {
103 >    Real w() const {
104 >      return this->data_[0];
105 >    }
106  
107 <    };
107 >    /**
108 >     * Returns the reference of the first element of this quaternion.
109 >     * @return the reference of the first element of this quaternion
110 >     */
111 >    Real& w() {
112 >      return this->data_[0];    
113 >    }
114 >
115 >    /**
116 >     * Returns the value of the first element of this quaternion.
117 >     * @return the value of the first element of this quaternion
118 >     */
119 >    Real x() const {
120 >      return this->data_[1];
121 >    }
122 >
123 >    /**
124 >     * Returns the reference of the second element of this quaternion.
125 >     * @return the reference of the second element of this quaternion
126 >     */
127 >    Real& x() {
128 >      return this->data_[1];    
129 >    }
130 >
131 >    /**
132 >     * Returns the value of the thirf element of this quaternion.
133 >     * @return the value of the third element of this quaternion
134 >     */
135 >    Real y() const {
136 >      return this->data_[2];
137 >    }
138 >
139 >    /**
140 >     * Returns the reference of the third element of this quaternion.
141 >     * @return the reference of the third element of this quaternion
142 >     */          
143 >    Real& y() {
144 >      return this->data_[2];    
145 >    }
146 >
147 >    /**
148 >     * Returns the value of the fourth element of this quaternion.
149 >     * @return the value of the fourth element of this quaternion
150 >     */
151 >    Real z() const {
152 >      return this->data_[3];
153 >    }
154 >    /**
155 >     * Returns the reference of the fourth element of this quaternion.
156 >     * @return the reference of the fourth element of this quaternion
157 >     */
158 >    Real& z() {
159 >      return this->data_[3];    
160 >    }
161 >
162 >    /**
163 >     * Tests if this quaternion is equal to other quaternion
164 >     * @return true if equal, otherwise return false
165 >     * @param q quaternion to be compared
166 >     */
167 >    inline bool operator ==(const Quaternion<Real>& q) {
168 >
169 >      for (unsigned int i = 0; i < 4; i ++) {
170 >        if (!equal(this->data_[i], q[i])) {
171 >          return false;
172 >        }
173 >      }
174 >                
175 >      return true;
176 >    }
177 >            
178 >    /**
179 >     * Returns the inverse of this quaternion
180 >     * @return inverse
181 >     * @note since quaternion is a complex number, the inverse of quaternion
182 >     * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
183 >     */
184 >    Quaternion<Real> inverse() {
185 >      Quaternion<Real> q;
186 >      Real d = this->lengthSquare();
187 >                
188 >      q.w() = w() / d;
189 >      q.x() = -x() / d;
190 >      q.y() = -y() / d;
191 >      q.z() = -z() / d;
192 >                
193 >      return q;
194 >    }
195 >
196 >    /**
197 >     * Sets the value to the multiplication of itself and another quaternion
198 >     * @param q the other quaternion
199 >     */
200 >    void mul(const Quaternion<Real>& q) {
201 >      Quaternion<Real> tmp(*this);
202 >
203 >      this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
204 >      this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
205 >      this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
206 >      this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);                
207 >    }
208 >
209 >    void mul(const Real& s) {
210 >      this->data_[0] *= s;
211 >      this->data_[1] *= s;
212 >      this->data_[2] *= s;
213 >      this->data_[3] *= s;
214 >    }
215 >
216 >    /** Set the value of this quaternion to the division of itself by another quaternion */
217 >    void div(Quaternion<Real>& q) {
218 >      mul(q.inverse());
219 >    }
220 >
221 >    void div(const Real& s) {
222 >      this->data_[0] /= s;
223 >      this->data_[1] /= s;
224 >      this->data_[2] /= s;
225 >      this->data_[3] /= s;
226 >    }
227 >            
228 >    Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
229 >      mul(q);
230 >      return *this;
231 >    }
232 >
233 >    Quaternion<Real>& operator *=(const Real& s) {
234 >      mul(s);
235 >      return *this;
236 >    }
237 >            
238 >    Quaternion<Real>& operator /=(Quaternion<Real>& q) {                
239 >      *this *= q.inverse();
240 >      return *this;
241 >    }
242 >
243 >    Quaternion<Real>& operator /=(const Real& s) {
244 >      div(s);
245 >      return *this;
246 >    }            
247 >    /**
248 >     * Returns the conjugate quaternion of this quaternion
249 >     * @return the conjugate quaternion of this quaternion
250 >     */
251 >    Quaternion<Real> conjugate() const {
252 >      return Quaternion<Real>(w(), -x(), -y(), -z());            
253 >    }
254 >
255 >
256 >    /**
257 >       return rotation angle from -PI to PI
258 >    */
259 >    inline Real get_rotation_angle() const{
260 >      if( w() < (Real)0.0 )
261 >        return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
262 >      else
263 >        return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() );
264 >    }
265 >
266 >    /**
267 >       create a unit quaternion from axis angle representation
268 >    */
269 >    Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
270 >                                   const Real& angle){
271 >      Vector3<Real> v(axis);
272 >      v.normalize();
273 >      Real half_angle = angle*0.5;
274 >      Real sin_a = sin(half_angle);
275 >      *this = Quaternion<Real>(cos(half_angle),
276 >                               v.x()*sin_a,
277 >                               v.y()*sin_a,
278 >                               v.z()*sin_a);
279 >      return *this;
280 >    }
281 >    
282 >    /**
283 >       convert a quaternion to axis angle representation,
284 >       preserve the axis direction and angle from -PI to +PI
285 >    */
286 >    void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
287 >      Real vl = sqrt( x()*x() + y()*y() + z()*z() );
288 >      if( vl > tiny ) {
289 >        Real ivl = 1.0/vl;
290 >        axis.x() = x() * ivl;
291 >        axis.y() = y() * ivl;
292 >        axis.z() = z() * ivl;
293 >
294 >        if( w() < 0 )
295 >          angle = 2.0*atan2(-vl, -w()); //-PI,0
296 >        else
297 >          angle = 2.0*atan2( vl,  w()); //0,PI
298 >      } else {
299 >        axis = Vector3<Real>(0.0,0.0,0.0);
300 >        angle = 0.0;
301 >      }
302 >    }
303 >
304 >    /**
305 >       shortest arc quaternion rotate one vector to another by shortest path.
306 >       create rotation from -> to, for any length vectors.
307 >    */
308 >    Quaternion<Real> fromShortestArc(const Vector3d& from,
309 >                                     const Vector3d& to ) {
310 >      
311 >      Vector3d c( cross(from,to) );
312 >      *this = Quaternion<Real>(dot(from,to),
313 >                               c.x(),
314 >                               c.y(),
315 >                               c.z());
316 >
317 >      this->normalize();    // if "from" or "to" not unit, normalize quat
318 >      w() += 1.0f;            // reducing angle to halfangle
319 >      if( w() <= 1e-6 ) {     // angle close to PI
320 >        if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
321 >          this->data_[0] =  w();    
322 >          this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0))
323 >          this->data_[2] =  from.z();
324 >          this->data_[3] = -from.y();
325 >        } else {
326 >          this->data_[0] =  w();
327 >          this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1))
328 >          this->data_[2] = -from.x();
329 >          this->data_[3] =  0.0;
330 >        }
331 >      }
332 >      this->normalize();
333 >    }
334  
335 +    Real ComputeTwist(const Quaternion& q) {
336 +      return  (Real)2.0 * atan2(q.z(), q.w());
337 +    }
338 +
339 +    void RemoveTwist(Quaternion& q) {
340 +      Real t = ComputeTwist(q);
341 +      Quaternion rt = fromAxisAngle(V3Z, t);
342 +      
343 +      q *= rt.inverse();
344 +    }
345 +
346 +    void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
347 +                                Vector3<Real>& swingAxis) {
348 +      
349 +      twistAngle = (Real)2.0 * atan2(z(), w());
350 +      Quaternion rt, rs;
351 +      rt.fromAxisAngle(V3Z, twistAngle);
352 +      rs = *this * rt.inverse();
353 +      
354 +      Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
355 +      if( vl > tiny ) {
356 +        Real ivl = 1.0 / vl;
357 +        swingAxis.x() = rs.x() * ivl;
358 +        swingAxis.y() = rs.y() * ivl;
359 +        swingAxis.z() = rs.z() * ivl;
360 +
361 +        if( rs.w() < 0.0 )
362 +          swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
363 +        else
364 +          swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI
365 +      } else {
366 +        swingAxis = Vector3<Real>(1.0,0.0,0.0);
367 +        swingAngle = 0.0;
368 +      }          
369 +    }
370 +
371 +
372 +    Vector3<Real> rotate(const Vector3<Real>& v) {
373 +
374 +      Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
375 +                         v.y() * w() + v.x() * z() - v.z() * x(),
376 +                         v.z() * w() + v.y() * x() - v.x() * y(),
377 +                         v.x() * x() + v.y() * y() + v.z() * z());
378 +
379 +      return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
380 +                           w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
381 +                           w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
382 +        ( 1.0/this->lengthSquare() );      
383 +    }  
384 +
385 +    Quaternion<Real>& align (const Vector3<Real>& V1,
386 +                             const Vector3<Real>& V2) {
387 +
388 +      // If V1 and V2 are not parallel, the axis of rotation is the unit-length
389 +      // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation,
390 +      // A, is the angle between V1 and V2.  The quaternion for the rotation is
391 +      // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
392 +      //
393 +      // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
394 +      //     compute sin(A/2) and cos(A/2), we reduce the computational costs
395 +      //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
396 +      //     Dot(V1,B).
397 +      //
398 +      // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
399 +      //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
400 +      //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
401 +      //     C = Cross(V1,B).
402 +      //
403 +      // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2,
404 +      // then B = 0.  This can happen even if V1 is approximately -V2 using
405 +      // floating point arithmetic, since Vector3::Normalize checks for
406 +      // closeness to zero and returns the zero vector accordingly.  The test
407 +      // for exactly zero is usually not recommend for floating point
408 +      // arithmetic, but the implementation of Vector3::Normalize guarantees
409 +      // the comparison is robust.  In this case, the A = pi and any axis
410 +      // perpendicular to V1 may be used as the rotation axis.
411 +
412 +      Vector3<Real> Bisector = V1 + V2;
413 +      Bisector.normalize();
414 +
415 +      Real CosHalfAngle = dot(V1,Bisector);
416 +
417 +      this->data_[0] = CosHalfAngle;
418 +
419 +      if (CosHalfAngle != (Real)0.0) {
420 +        Vector3<Real> Cross = cross(V1, Bisector);
421 +        this->data_[1] = Cross.x();
422 +        this->data_[2] = Cross.y();
423 +        this->data_[3] = Cross.z();
424 +      } else {
425 +        Real InvLength;
426 +        if (fabs(V1[0]) >= fabs(V1[1])) {
427 +          // V1.x or V1.z is the largest magnitude component
428 +          InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
429 +
430 +          this->data_[1] = -V1[2]*InvLength;
431 +          this->data_[2] = (Real)0.0;
432 +          this->data_[3] = +V1[0]*InvLength;
433 +        } else {
434 +          // V1.y or V1.z is the largest magnitude component
435 +          InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
436 +          
437 +          this->data_[1] = (Real)0.0;
438 +          this->data_[2] = +V1[2]*InvLength;
439 +          this->data_[3] = -V1[1]*InvLength;
440 +        }
441 +      }
442 +      return *this;
443 +    }
444 +
445 +    void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
446 +      
447 +      // First test if the swing is in the singularity:
448 +
449 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
450 +
451 +      // Decompose into twist-swing by solving the equation:
452 +      //
453 +      //                       Qtwist(t*2) * Qswing(s*2) = q
454 +      //
455 +      // note: (x,y) is the normalized swing axis (x*x+y*y=1)
456 +      //
457 +      //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
458 +      //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1)
459 +      // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
460 +      //
461 +      // The swing rotation/2 s comes from:
462 +      //
463 +      // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>  
464 +      //                                       Cs = sqrt ( qw^2 + qz^2 ) (3)
465 +      //
466 +      // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
467 +      //                                       Ss = sqrt ( qx^2 + qy^2 ) (4)
468 +      // From (1):  |SsCt -StSs| |x| = |qx|
469 +      //            |StSs +SsCt| |y|   |qy|                              (5)
470 +
471 +      Real qw, qx, qy, qz;
472 +      
473 +      if ( w()<0 ) {
474 +        qw=-w();
475 +        qx=-x();
476 +        qy=-y();
477 +        qz=-z();
478 +      } else {
479 +        qw=w();
480 +        qx=x();
481 +        qy=y();
482 +        qz=z();
483 +      }
484 +      
485 +      Real t = atan2 ( qz, qw ); // from (2)
486 +      Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
487 +                                                              // and (4)
488 +
489 +      Real x=0.0, y=0.0, sins=sin(s);
490 +
491 +      if ( !ISZERO(sins,tiny) ) {
492 +        Real sint = sin(t);
493 +        Real cost = cos(t);
494 +        
495 +        // by solving the linear system in (5):
496 +        y = (-qx*sint + qy*cost)/sins;
497 +        x = ( qx*cost + qy*sint)/sins;
498 +      }
499 +
500 +      tw = (Real)2.0*t;
501 +      sx = (Real)2.0*x*s;
502 +      sy = (Real)2.0*y*s;
503 +    }
504 +
505 +    void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
506 +
507 +      // Decompose q into swing-twist using a similar development as
508 +      // in function toTwistSwing
509 +
510 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
511 +      
512 +      Real qw, qx, qy, qz;
513 +      if ( w() < 0 ){
514 +        qw=-w();
515 +        qx=-x();
516 +        qy=-y();
517 +        qz=-z();
518 +      } else {
519 +        qw=w();
520 +        qx=x();
521 +        qy=y();
522 +        qz=z();
523 +      }
524 +
525 +      // Get the twist t:
526 +      Real t = 2.0 * atan2(qz,qw);
527 +      
528 +      Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
529 +      Real gam = t/2.0;
530 +      Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
531 +      Real singam = sin(gam);
532 +      Real cosgam = cos(gam);
533 +
534 +      sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
535 +      sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
536 +      tw = Real( t );
537 +    }
538 +      
539 +    
540 +    
541 +    /**
542 +     * Returns the corresponding rotation matrix (3x3)
543 +     * @return a 3x3 rotation matrix
544 +     */
545 +    SquareMatrix<Real, 3> toRotationMatrix3() {
546 +      SquareMatrix<Real, 3> rotMat3;
547 +      
548 +      Real w2;
549 +      Real x2;
550 +      Real y2;
551 +      Real z2;
552 +
553 +      if (!this->isNormalized())
554 +        this->normalize();
555 +                
556 +      w2 = w() * w();
557 +      x2 = x() * x();
558 +      y2 = y() * y();
559 +      z2 = z() * z();
560 +
561 +      rotMat3(0, 0) = w2 + x2 - y2 - z2;
562 +      rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
563 +      rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
564 +
565 +      rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
566 +      rotMat3(1, 1) = w2 - x2 + y2 - z2;
567 +      rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
568 +
569 +      rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
570 +      rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
571 +      rotMat3(2, 2) = w2 - x2 -y2 +z2;
572 +
573 +      return rotMat3;
574 +    }
575 +
576 +  };//end Quaternion
577 +
578 +
579 +    /**
580 +     * Returns the vaule of scalar multiplication of this quaterion q (q * s).
581 +     * @return  the vaule of scalar multiplication of this vector
582 +     * @param q the source quaternion
583 +     * @param s the scalar value
584 +     */
585 +  template<typename Real, unsigned int Dim>                
586 +  Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {      
587 +    Quaternion<Real> result(q);
588 +    result.mul(s);
589 +    return result;          
590 +  }
591 +    
592 +  /**
593 +   * Returns the vaule of scalar multiplication of this quaterion q (q * s).
594 +   * @return  the vaule of scalar multiplication of this vector
595 +   * @param s the scalar value
596 +   * @param q the source quaternion
597 +   */  
598 +  template<typename Real, unsigned int Dim>
599 +  Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
600 +    Quaternion<Real> result(q);
601 +    result.mul(s);
602 +    return result;          
603 +  }    
604 +
605 +  /**
606 +   * Returns the multiplication of two quaternion
607 +   * @return the multiplication of two quaternion
608 +   * @param q1 the first quaternion
609 +   * @param q2 the second quaternion
610 +   */
611 +  template<typename Real>
612 +  inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
613 +    Quaternion<Real> result(q1);
614 +    result *= q2;
615 +    return result;
616 +  }
617 +
618 +  /**
619 +   * Returns the division of two quaternion
620 +   * @param q1 divisor
621 +   * @param q2 dividen
622 +   */
623 +
624 +  template<typename Real>
625 +  inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) {
626 +    return q1 * q2.inverse();
627 +  }
628 +
629 +  /**
630 +   * Returns the value of the division of a scalar by a quaternion
631 +   * @return the value of the division of a scalar by a quaternion
632 +   * @param s scalar
633 +   * @param q quaternion
634 +   * @note for a quaternion q, 1/q = q.inverse()
635 +   */
636 +  template<typename Real>
637 +  Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) {
638 +
639 +    Quaternion<Real> x;
640 +    x = q.inverse();
641 +    x *= s;
642 +    return x;
643 +  }
644 +    
645 +  template <class T>
646 +  inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
647 +    return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
648 +  }
649 +    
650 +  typedef Quaternion<RealType> Quat4d;
651   }
652   #endif //MATH_QUATERNION_HPP

Comparing:
trunk/src/math/Quaternion.hpp (property svn:keywords), Revision 92 by tim, Sat Oct 16 01:31:28 2004 UTC vs.
branches/development/src/math/Quaternion.hpp (property svn:keywords), Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines