6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
49 |
|
|
50 |
|
#ifndef MATH_QUATERNION_HPP |
51 |
|
#define MATH_QUATERNION_HPP |
52 |
+ |
#include "config.h" |
53 |
+ |
#include <cmath> |
54 |
|
|
55 |
< |
#include "math/Vector.hpp" |
55 |
> |
#include "math/Vector3.hpp" |
56 |
|
#include "math/SquareMatrix.hpp" |
57 |
+ |
#define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) |
58 |
+ |
const RealType tiny=1.0e-6; |
59 |
|
|
60 |
< |
namespace oopse{ |
60 |
> |
namespace OpenMD{ |
61 |
|
|
62 |
|
/** |
63 |
|
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
64 |
|
* Quaternion is a sort of a higher-level complex number. |
65 |
|
* It is defined as Q = w + x*i + y*j + z*k, |
66 |
< |
* where w, x, y, and z are numbers of type T (e.g. double), and |
66 |
> |
* where w, x, y, and z are numbers of type T (e.g. RealType), and |
67 |
|
* i*i = -1; j*j = -1; k*k = -1; |
68 |
|
* i*j = k; j*k = i; k*i = j; |
69 |
|
*/ |
70 |
|
template<typename Real> |
71 |
|
class Quaternion : public Vector<Real, 4> { |
72 |
+ |
|
73 |
|
public: |
74 |
|
Quaternion() : Vector<Real, 4>() {} |
75 |
|
|
84 |
|
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
85 |
|
Quaternion(const Vector<Real,4>& v) |
86 |
|
: Vector<Real, 4>(v){ |
87 |
< |
} |
87 |
> |
} |
88 |
|
|
89 |
|
/** copy assignment */ |
90 |
|
Quaternion& operator =(const Vector<Real, 4>& v){ |
91 |
|
if (this == & v) |
92 |
|
return *this; |
93 |
< |
|
93 |
> |
|
94 |
|
Vector<Real, 4>::operator=(v); |
95 |
< |
|
95 |
> |
|
96 |
|
return *this; |
97 |
|
} |
98 |
< |
|
98 |
> |
|
99 |
|
/** |
100 |
|
* Returns the value of the first element of this quaternion. |
101 |
|
* @return the value of the first element of this quaternion |
248 |
|
* Returns the conjugate quaternion of this quaternion |
249 |
|
* @return the conjugate quaternion of this quaternion |
250 |
|
*/ |
251 |
< |
Quaternion<Real> conjugate() { |
251 |
> |
Quaternion<Real> conjugate() const { |
252 |
|
return Quaternion<Real>(w(), -x(), -y(), -z()); |
253 |
+ |
} |
254 |
+ |
|
255 |
+ |
|
256 |
+ |
/** |
257 |
+ |
return rotation angle from -PI to PI |
258 |
+ |
*/ |
259 |
+ |
inline Real get_rotation_angle() const{ |
260 |
+ |
if( w() < (Real)0.0 ) |
261 |
+ |
return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); |
262 |
+ |
else |
263 |
+ |
return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() ); |
264 |
+ |
} |
265 |
+ |
|
266 |
+ |
/** |
267 |
+ |
create a unit quaternion from axis angle representation |
268 |
+ |
*/ |
269 |
+ |
Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, |
270 |
+ |
const Real& angle){ |
271 |
+ |
Vector3<Real> v(axis); |
272 |
+ |
v.normalize(); |
273 |
+ |
Real half_angle = angle*0.5; |
274 |
+ |
Real sin_a = sin(half_angle); |
275 |
+ |
*this = Quaternion<Real>(cos(half_angle), |
276 |
+ |
v.x()*sin_a, |
277 |
+ |
v.y()*sin_a, |
278 |
+ |
v.z()*sin_a); |
279 |
+ |
return *this; |
280 |
+ |
} |
281 |
+ |
|
282 |
+ |
/** |
283 |
+ |
convert a quaternion to axis angle representation, |
284 |
+ |
preserve the axis direction and angle from -PI to +PI |
285 |
+ |
*/ |
286 |
+ |
void toAxisAngle(Vector3<Real>& axis, Real& angle)const { |
287 |
+ |
Real vl = sqrt( x()*x() + y()*y() + z()*z() ); |
288 |
+ |
if( vl > tiny ) { |
289 |
+ |
Real ivl = 1.0/vl; |
290 |
+ |
axis.x() = x() * ivl; |
291 |
+ |
axis.y() = y() * ivl; |
292 |
+ |
axis.z() = z() * ivl; |
293 |
+ |
|
294 |
+ |
if( w() < 0 ) |
295 |
+ |
angle = 2.0*atan2(-vl, -w()); //-PI,0 |
296 |
+ |
else |
297 |
+ |
angle = 2.0*atan2( vl, w()); //0,PI |
298 |
+ |
} else { |
299 |
+ |
axis = Vector3<Real>(0.0,0.0,0.0); |
300 |
+ |
angle = 0.0; |
301 |
+ |
} |
302 |
+ |
} |
303 |
+ |
|
304 |
+ |
/** |
305 |
+ |
shortest arc quaternion rotate one vector to another by shortest path. |
306 |
+ |
create rotation from -> to, for any length vectors. |
307 |
+ |
*/ |
308 |
+ |
Quaternion<Real> fromShortestArc(const Vector3d& from, |
309 |
+ |
const Vector3d& to ) { |
310 |
+ |
|
311 |
+ |
Vector3d c( cross(from,to) ); |
312 |
+ |
*this = Quaternion<Real>(dot(from,to), |
313 |
+ |
c.x(), |
314 |
+ |
c.y(), |
315 |
+ |
c.z()); |
316 |
+ |
|
317 |
+ |
this->normalize(); // if "from" or "to" not unit, normalize quat |
318 |
+ |
w() += 1.0f; // reducing angle to halfangle |
319 |
+ |
if( w() <= 1e-6 ) { // angle close to PI |
320 |
+ |
if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { |
321 |
+ |
this->data_[0] = w(); |
322 |
+ |
this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0)) |
323 |
+ |
this->data_[2] = from.z(); |
324 |
+ |
this->data_[3] = -from.y(); |
325 |
+ |
} else { |
326 |
+ |
this->data_[0] = w(); |
327 |
+ |
this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1)) |
328 |
+ |
this->data_[2] = -from.x(); |
329 |
+ |
this->data_[3] = 0.0; |
330 |
+ |
} |
331 |
+ |
} |
332 |
+ |
this->normalize(); |
333 |
+ |
} |
334 |
+ |
|
335 |
+ |
Real ComputeTwist(const Quaternion& q) { |
336 |
+ |
return (Real)2.0 * atan2(q.z(), q.w()); |
337 |
+ |
} |
338 |
+ |
|
339 |
+ |
void RemoveTwist(Quaternion& q) { |
340 |
+ |
Real t = ComputeTwist(q); |
341 |
+ |
Quaternion rt = fromAxisAngle(V3Z, t); |
342 |
+ |
|
343 |
+ |
q *= rt.inverse(); |
344 |
+ |
} |
345 |
+ |
|
346 |
+ |
void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, |
347 |
+ |
Vector3<Real>& swingAxis) { |
348 |
+ |
|
349 |
+ |
twistAngle = (Real)2.0 * atan2(z(), w()); |
350 |
+ |
Quaternion rt, rs; |
351 |
+ |
rt.fromAxisAngle(V3Z, twistAngle); |
352 |
+ |
rs = *this * rt.inverse(); |
353 |
+ |
|
354 |
+ |
Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); |
355 |
+ |
if( vl > tiny ) { |
356 |
+ |
Real ivl = 1.0 / vl; |
357 |
+ |
swingAxis.x() = rs.x() * ivl; |
358 |
+ |
swingAxis.y() = rs.y() * ivl; |
359 |
+ |
swingAxis.z() = rs.z() * ivl; |
360 |
+ |
|
361 |
+ |
if( rs.w() < 0.0 ) |
362 |
+ |
swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 |
363 |
+ |
else |
364 |
+ |
swingAngle = 2.0*atan2( vl, rs.w()); //0,PI |
365 |
+ |
} else { |
366 |
+ |
swingAxis = Vector3<Real>(1.0,0.0,0.0); |
367 |
+ |
swingAngle = 0.0; |
368 |
+ |
} |
369 |
+ |
} |
370 |
+ |
|
371 |
+ |
|
372 |
+ |
Vector3<Real> rotate(const Vector3<Real>& v) { |
373 |
+ |
|
374 |
+ |
Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), |
375 |
+ |
v.y() * w() + v.x() * z() - v.z() * x(), |
376 |
+ |
v.z() * w() + v.y() * x() - v.x() * y(), |
377 |
+ |
v.x() * x() + v.y() * y() + v.z() * z()); |
378 |
+ |
|
379 |
+ |
return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), |
380 |
+ |
w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), |
381 |
+ |
w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* |
382 |
+ |
( 1.0/this->lengthSquare() ); |
383 |
+ |
} |
384 |
+ |
|
385 |
+ |
Quaternion<Real>& align (const Vector3<Real>& V1, |
386 |
+ |
const Vector3<Real>& V2) { |
387 |
+ |
|
388 |
+ |
// If V1 and V2 are not parallel, the axis of rotation is the unit-length |
389 |
+ |
// vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation, |
390 |
+ |
// A, is the angle between V1 and V2. The quaternion for the rotation is |
391 |
+ |
// q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). |
392 |
+ |
// |
393 |
+ |
// (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then |
394 |
+ |
// compute sin(A/2) and cos(A/2), we reduce the computational costs |
395 |
+ |
// by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = |
396 |
+ |
// Dot(V1,B). |
397 |
+ |
// |
398 |
+ |
// (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but |
399 |
+ |
// Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in |
400 |
+ |
// which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where |
401 |
+ |
// C = Cross(V1,B). |
402 |
+ |
// |
403 |
+ |
// If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2, |
404 |
+ |
// then B = 0. This can happen even if V1 is approximately -V2 using |
405 |
+ |
// floating point arithmetic, since Vector3::Normalize checks for |
406 |
+ |
// closeness to zero and returns the zero vector accordingly. The test |
407 |
+ |
// for exactly zero is usually not recommend for floating point |
408 |
+ |
// arithmetic, but the implementation of Vector3::Normalize guarantees |
409 |
+ |
// the comparison is robust. In this case, the A = pi and any axis |
410 |
+ |
// perpendicular to V1 may be used as the rotation axis. |
411 |
+ |
|
412 |
+ |
Vector3<Real> Bisector = V1 + V2; |
413 |
+ |
Bisector.normalize(); |
414 |
+ |
|
415 |
+ |
Real CosHalfAngle = dot(V1,Bisector); |
416 |
+ |
|
417 |
+ |
this->data_[0] = CosHalfAngle; |
418 |
+ |
|
419 |
+ |
if (CosHalfAngle != (Real)0.0) { |
420 |
+ |
Vector3<Real> Cross = cross(V1, Bisector); |
421 |
+ |
this->data_[1] = Cross.x(); |
422 |
+ |
this->data_[2] = Cross.y(); |
423 |
+ |
this->data_[3] = Cross.z(); |
424 |
+ |
} else { |
425 |
+ |
Real InvLength; |
426 |
+ |
if (fabs(V1[0]) >= fabs(V1[1])) { |
427 |
+ |
// V1.x or V1.z is the largest magnitude component |
428 |
+ |
InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); |
429 |
+ |
|
430 |
+ |
this->data_[1] = -V1[2]*InvLength; |
431 |
+ |
this->data_[2] = (Real)0.0; |
432 |
+ |
this->data_[3] = +V1[0]*InvLength; |
433 |
+ |
} else { |
434 |
+ |
// V1.y or V1.z is the largest magnitude component |
435 |
+ |
InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); |
436 |
+ |
|
437 |
+ |
this->data_[1] = (Real)0.0; |
438 |
+ |
this->data_[2] = +V1[2]*InvLength; |
439 |
+ |
this->data_[3] = -V1[1]*InvLength; |
440 |
+ |
} |
441 |
+ |
} |
442 |
+ |
return *this; |
443 |
|
} |
444 |
|
|
445 |
+ |
void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { |
446 |
+ |
|
447 |
+ |
// First test if the swing is in the singularity: |
448 |
+ |
|
449 |
+ |
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } |
450 |
+ |
|
451 |
+ |
// Decompose into twist-swing by solving the equation: |
452 |
+ |
// |
453 |
+ |
// Qtwist(t*2) * Qswing(s*2) = q |
454 |
+ |
// |
455 |
+ |
// note: (x,y) is the normalized swing axis (x*x+y*y=1) |
456 |
+ |
// |
457 |
+ |
// ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) |
458 |
+ |
// ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1) |
459 |
+ |
// From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) |
460 |
+ |
// |
461 |
+ |
// The swing rotation/2 s comes from: |
462 |
+ |
// |
463 |
+ |
// From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => |
464 |
+ |
// Cs = sqrt ( qw^2 + qz^2 ) (3) |
465 |
+ |
// |
466 |
+ |
// From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => |
467 |
+ |
// Ss = sqrt ( qx^2 + qy^2 ) (4) |
468 |
+ |
// From (1): |SsCt -StSs| |x| = |qx| |
469 |
+ |
// |StSs +SsCt| |y| |qy| (5) |
470 |
+ |
|
471 |
+ |
Real qw, qx, qy, qz; |
472 |
+ |
|
473 |
+ |
if ( w()<0 ) { |
474 |
+ |
qw=-w(); |
475 |
+ |
qx=-x(); |
476 |
+ |
qy=-y(); |
477 |
+ |
qz=-z(); |
478 |
+ |
} else { |
479 |
+ |
qw=w(); |
480 |
+ |
qx=x(); |
481 |
+ |
qy=y(); |
482 |
+ |
qz=z(); |
483 |
+ |
} |
484 |
+ |
|
485 |
+ |
Real t = atan2 ( qz, qw ); // from (2) |
486 |
+ |
Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) |
487 |
+ |
// and (4) |
488 |
+ |
|
489 |
+ |
Real x=0.0, y=0.0, sins=sin(s); |
490 |
+ |
|
491 |
+ |
if ( !ISZERO(sins,tiny) ) { |
492 |
+ |
Real sint = sin(t); |
493 |
+ |
Real cost = cos(t); |
494 |
+ |
|
495 |
+ |
// by solving the linear system in (5): |
496 |
+ |
y = (-qx*sint + qy*cost)/sins; |
497 |
+ |
x = ( qx*cost + qy*sint)/sins; |
498 |
+ |
} |
499 |
+ |
|
500 |
+ |
tw = (Real)2.0*t; |
501 |
+ |
sx = (Real)2.0*x*s; |
502 |
+ |
sy = (Real)2.0*y*s; |
503 |
+ |
} |
504 |
+ |
|
505 |
+ |
void toSwingTwist(Real& sx, Real& sy, Real& tw ) { |
506 |
+ |
|
507 |
+ |
// Decompose q into swing-twist using a similar development as |
508 |
+ |
// in function toTwistSwing |
509 |
+ |
|
510 |
+ |
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } |
511 |
+ |
|
512 |
+ |
Real qw, qx, qy, qz; |
513 |
+ |
if ( w() < 0 ){ |
514 |
+ |
qw=-w(); |
515 |
+ |
qx=-x(); |
516 |
+ |
qy=-y(); |
517 |
+ |
qz=-z(); |
518 |
+ |
} else { |
519 |
+ |
qw=w(); |
520 |
+ |
qx=x(); |
521 |
+ |
qy=y(); |
522 |
+ |
qz=z(); |
523 |
+ |
} |
524 |
+ |
|
525 |
+ |
// Get the twist t: |
526 |
+ |
Real t = 2.0 * atan2(qz,qw); |
527 |
+ |
|
528 |
+ |
Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); |
529 |
+ |
Real gam = t/2.0; |
530 |
+ |
Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; |
531 |
+ |
Real singam = sin(gam); |
532 |
+ |
Real cosgam = cos(gam); |
533 |
+ |
|
534 |
+ |
sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); |
535 |
+ |
sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); |
536 |
+ |
tw = Real( t ); |
537 |
+ |
} |
538 |
+ |
|
539 |
+ |
|
540 |
+ |
|
541 |
|
/** |
542 |
|
* Returns the corresponding rotation matrix (3x3) |
543 |
|
* @return a 3x3 rotation matrix |
544 |
|
*/ |
545 |
|
SquareMatrix<Real, 3> toRotationMatrix3() { |
546 |
|
SquareMatrix<Real, 3> rotMat3; |
547 |
< |
|
547 |
> |
|
548 |
|
Real w2; |
549 |
|
Real x2; |
550 |
|
Real y2; |
647 |
|
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
648 |
|
} |
649 |
|
|
650 |
< |
typedef Quaternion<double> Quat4d; |
650 |
> |
typedef Quaternion<RealType> Quat4d; |
651 |
|
} |
652 |
|
#endif //MATH_QUATERNION_HPP |