ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Quaternion.hpp
(Generate patch)

Comparing:
trunk/src/math/Quaternion.hpp (file contents), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/math/Quaternion.hpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #ifndef MATH_QUATERNION_HPP
51   #define MATH_QUATERNION_HPP
52 + #include "config.h"
53 + #include <cmath>
54  
55 < #include "math/Vector.hpp"
55 > #include "math/Vector3.hpp"
56   #include "math/SquareMatrix.hpp"
57 + #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
58 + const RealType tiny=1.0e-6;    
59  
60 < namespace oopse{
60 > namespace OpenMD{
61  
62 <    /**
63 <     * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
64 <     * Quaternion is a sort of a higher-level complex number.
65 <     * It is defined as Q = w + x*i + y*j + z*k,
66 <     * where w, x, y, and z are numbers of type T (e.g. double), and
67 <     * i*i = -1; j*j = -1; k*k = -1;
68 <     * i*j = k; j*k = i; k*i = j;
69 <     */
70 <    template<typename Real>
71 <    class Quaternion : public Vector<Real, 4> {
67 <        public:
68 <            Quaternion() : Vector<Real, 4>() {}
62 >  /**
63 >   * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
64 >   * Quaternion is a sort of a higher-level complex number.
65 >   * It is defined as Q = w + x*i + y*j + z*k,
66 >   * where w, x, y, and z are numbers of type T (e.g. RealType), and
67 >   * i*i = -1; j*j = -1; k*k = -1;
68 >   * i*j = k; j*k = i; k*i = j;
69 >   */
70 >  template<typename Real>
71 >  class Quaternion : public Vector<Real, 4> {
72  
73 <            /** Constructs and initializes a Quaternion from w, x, y, z values */    
74 <            Quaternion(Real w, Real x, Real y, Real z) {
75 <                data_[0] = w;
76 <                data_[1] = x;
77 <                data_[2] = y;
78 <                data_[3] = z;                
79 <            }
73 >  public:
74 >    Quaternion() : Vector<Real, 4>() {}
75 >
76 >    /** Constructs and initializes a Quaternion from w, x, y, z values */    
77 >    Quaternion(Real w, Real x, Real y, Real z) {
78 >      this->data_[0] = w;
79 >      this->data_[1] = x;
80 >      this->data_[2] = y;
81 >      this->data_[3] = z;                
82 >    }
83              
84 <            /** Constructs and initializes a Quaternion from a  Vector<Real,4> */    
85 <            Quaternion(const Vector<Real,4>& v)
86 <                : Vector<Real, 4>(v){
87 <            }
84 >    /** Constructs and initializes a Quaternion from a  Vector<Real,4> */    
85 >    Quaternion(const Vector<Real,4>& v)
86 >      : Vector<Real, 4>(v){
87 >    }
88  
89 <            /** copy assignment */
90 <            Quaternion& operator =(const Vector<Real, 4>& v){
91 <                if (this == & v)
92 <                    return *this;
89 >    /** copy assignment */
90 >    Quaternion& operator =(const Vector<Real, 4>& v){
91 >      if (this == & v)
92 >        return *this;
93 >      
94 >      Vector<Real, 4>::operator=(v);
95 >      
96 >      return *this;
97 >    }
98 >    
99 >    /**
100 >     * Returns the value of the first element of this quaternion.
101 >     * @return the value of the first element of this quaternion
102 >     */
103 >    Real w() const {
104 >      return this->data_[0];
105 >    }
106  
107 <                Vector<Real, 4>::operator=(v);
108 <                
109 <                return *this;
110 <            }
107 >    /**
108 >     * Returns the reference of the first element of this quaternion.
109 >     * @return the reference of the first element of this quaternion
110 >     */
111 >    Real& w() {
112 >      return this->data_[0];    
113 >    }
114  
115 <            /**
116 <             * Returns the value of the first element of this quaternion.
117 <             * @return the value of the first element of this quaternion
118 <             */
119 <            Real w() const {
120 <                return data_[0];
121 <            }
115 >    /**
116 >     * Returns the value of the first element of this quaternion.
117 >     * @return the value of the first element of this quaternion
118 >     */
119 >    Real x() const {
120 >      return this->data_[1];
121 >    }
122  
123 <            /**
124 <             * Returns the reference of the first element of this quaternion.
125 <             * @return the reference of the first element of this quaternion
126 <             */
127 <            Real& w() {
128 <                return data_[0];    
129 <            }
123 >    /**
124 >     * Returns the reference of the second element of this quaternion.
125 >     * @return the reference of the second element of this quaternion
126 >     */
127 >    Real& x() {
128 >      return this->data_[1];    
129 >    }
130  
131 <            /**
132 <             * Returns the value of the first element of this quaternion.
133 <             * @return the value of the first element of this quaternion
134 <             */
135 <            Real x() const {
136 <                return data_[1];
137 <            }
131 >    /**
132 >     * Returns the value of the thirf element of this quaternion.
133 >     * @return the value of the third element of this quaternion
134 >     */
135 >    Real y() const {
136 >      return this->data_[2];
137 >    }
138  
139 <            /**
140 <             * Returns the reference of the second element of this quaternion.
141 <             * @return the reference of the second element of this quaternion
142 <             */
143 <            Real& x() {
144 <                return data_[1];    
145 <            }
139 >    /**
140 >     * Returns the reference of the third element of this quaternion.
141 >     * @return the reference of the third element of this quaternion
142 >     */          
143 >    Real& y() {
144 >      return this->data_[2];    
145 >    }
146  
147 <            /**
148 <             * Returns the value of the thirf element of this quaternion.
149 <             * @return the value of the third element of this quaternion
150 <             */
151 <            Real y() const {
152 <                return data_[2];
153 <            }
147 >    /**
148 >     * Returns the value of the fourth element of this quaternion.
149 >     * @return the value of the fourth element of this quaternion
150 >     */
151 >    Real z() const {
152 >      return this->data_[3];
153 >    }
154 >    /**
155 >     * Returns the reference of the fourth element of this quaternion.
156 >     * @return the reference of the fourth element of this quaternion
157 >     */
158 >    Real& z() {
159 >      return this->data_[3];    
160 >    }
161  
162 <            /**
163 <             * Returns the reference of the third element of this quaternion.
164 <             * @return the reference of the third element of this quaternion
165 <             */          
166 <            Real& y() {
167 <                return data_[2];    
139 <            }
162 >    /**
163 >     * Tests if this quaternion is equal to other quaternion
164 >     * @return true if equal, otherwise return false
165 >     * @param q quaternion to be compared
166 >     */
167 >    inline bool operator ==(const Quaternion<Real>& q) {
168  
169 <            /**
170 <             * Returns the value of the fourth element of this quaternion.
171 <             * @return the value of the fourth element of this quaternion
172 <             */
173 <            Real z() const {
146 <                return data_[3];
147 <            }
148 <            /**
149 <             * Returns the reference of the fourth element of this quaternion.
150 <             * @return the reference of the fourth element of this quaternion
151 <             */
152 <            Real& z() {
153 <                return data_[3];    
154 <            }
155 <
156 <            /**
157 <             * Tests if this quaternion is equal to other quaternion
158 <             * @return true if equal, otherwise return false
159 <             * @param q quaternion to be compared
160 <             */
161 <             inline bool operator ==(const Quaternion<Real>& q) {
162 <
163 <                for (unsigned int i = 0; i < 4; i ++) {
164 <                    if (!equal(data_[i], q[i])) {
165 <                        return false;
166 <                    }
167 <                }
169 >      for (unsigned int i = 0; i < 4; i ++) {
170 >        if (!equal(this->data_[i], q[i])) {
171 >          return false;
172 >        }
173 >      }
174                  
175 <                return true;
176 <            }
175 >      return true;
176 >    }
177              
178 <            /**
179 <             * Returns the inverse of this quaternion
180 <             * @return inverse
181 <             * @note since quaternion is a complex number, the inverse of quaternion
182 <             * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
183 <             */
184 <            Quaternion<Real> inverse() {
185 <                Quaternion<Real> q;
186 <                Real d = this->lengthSquare();
178 >    /**
179 >     * Returns the inverse of this quaternion
180 >     * @return inverse
181 >     * @note since quaternion is a complex number, the inverse of quaternion
182 >     * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
183 >     */
184 >    Quaternion<Real> inverse() {
185 >      Quaternion<Real> q;
186 >      Real d = this->lengthSquare();
187                  
188 <                q.w() = w() / d;
189 <                q.x() = -x() / d;
190 <                q.y() = -y() / d;
191 <                q.z() = -z() / d;
188 >      q.w() = w() / d;
189 >      q.x() = -x() / d;
190 >      q.y() = -y() / d;
191 >      q.z() = -z() / d;
192                  
193 <                return q;
194 <            }
193 >      return q;
194 >    }
195  
196 <            /**
197 <             * Sets the value to the multiplication of itself and another quaternion
198 <             * @param q the other quaternion
199 <             */
200 <            void mul(const Quaternion<Real>& q) {
201 <                Quaternion<Real> tmp(*this);
196 >    /**
197 >     * Sets the value to the multiplication of itself and another quaternion
198 >     * @param q the other quaternion
199 >     */
200 >    void mul(const Quaternion<Real>& q) {
201 >      Quaternion<Real> tmp(*this);
202  
203 <                data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
204 <                data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
205 <                data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
206 <                data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);                
207 <            }
203 >      this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
204 >      this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
205 >      this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
206 >      this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);                
207 >    }
208  
209 <            void mul(const Real& s) {
210 <                data_[0] *= s;
211 <                data_[1] *= s;
212 <                data_[2] *= s;
213 <                data_[3] *= s;
214 <            }
209 >    void mul(const Real& s) {
210 >      this->data_[0] *= s;
211 >      this->data_[1] *= s;
212 >      this->data_[2] *= s;
213 >      this->data_[3] *= s;
214 >    }
215  
216 <            /** Set the value of this quaternion to the division of itself by another quaternion */
217 <            void div(Quaternion<Real>& q) {
218 <                mul(q.inverse());
219 <            }
216 >    /** Set the value of this quaternion to the division of itself by another quaternion */
217 >    void div(Quaternion<Real>& q) {
218 >      mul(q.inverse());
219 >    }
220  
221 <            void div(const Real& s) {
222 <                data_[0] /= s;
223 <                data_[1] /= s;
224 <                data_[2] /= s;
225 <                data_[3] /= s;
226 <            }
221 >    void div(const Real& s) {
222 >      this->data_[0] /= s;
223 >      this->data_[1] /= s;
224 >      this->data_[2] /= s;
225 >      this->data_[3] /= s;
226 >    }
227              
228 <            Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
229 <                mul(q);
230 <                return *this;
231 <            }
228 >    Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
229 >      mul(q);
230 >      return *this;
231 >    }
232  
233 <            Quaternion<Real>& operator *=(const Real& s) {
234 <                mul(s);
235 <                return *this;
236 <            }
233 >    Quaternion<Real>& operator *=(const Real& s) {
234 >      mul(s);
235 >      return *this;
236 >    }
237              
238 <            Quaternion<Real>& operator /=(Quaternion<Real>& q) {                
239 <                *this *= q.inverse();
240 <                return *this;
241 <            }
238 >    Quaternion<Real>& operator /=(Quaternion<Real>& q) {                
239 >      *this *= q.inverse();
240 >      return *this;
241 >    }
242  
243 <            Quaternion<Real>& operator /=(const Real& s) {
244 <                div(s);
245 <                return *this;
246 <            }            
247 <            /**
248 <             * Returns the conjugate quaternion of this quaternion
249 <             * @return the conjugate quaternion of this quaternion
250 <             */
251 <            Quaternion<Real> conjugate() {
252 <                return Quaternion<Real>(w(), -x(), -y(), -z());            
253 <            }
243 >    Quaternion<Real>& operator /=(const Real& s) {
244 >      div(s);
245 >      return *this;
246 >    }            
247 >    /**
248 >     * Returns the conjugate quaternion of this quaternion
249 >     * @return the conjugate quaternion of this quaternion
250 >     */
251 >    Quaternion<Real> conjugate() const {
252 >      return Quaternion<Real>(w(), -x(), -y(), -z());            
253 >    }
254  
249            /**
250             * Returns the corresponding rotation matrix (3x3)
251             * @return a 3x3 rotation matrix
252             */
253            SquareMatrix<Real, 3> toRotationMatrix3() {
254                SquareMatrix<Real, 3> rotMat3;
255  
256 <                Real w2;
257 <                Real x2;
258 <                Real y2;
259 <                Real z2;
256 >    /**
257 >       return rotation angle from -PI to PI
258 >    */
259 >    inline Real get_rotation_angle() const{
260 >      if( w() < (Real)0.0 )
261 >        return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
262 >      else
263 >        return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() );
264 >    }
265  
266 <                if (!isNormalized())
267 <                    normalize();
268 <                
269 <                w2 = w() * w();
270 <                x2 = x() * x();
271 <                y2 = y() * y();
272 <                z2 = z() * z();
273 <
274 <                rotMat3(0, 0) = w2 + x2 - y2 - z2;
275 <                rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
276 <                rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
277 <
278 <                rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
279 <                rotMat3(1, 1) = w2 - x2 + y2 - z2;
280 <                rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
281 <
282 <                rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
283 <                rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
284 <                rotMat3(2, 2) = w2 - x2 -y2 +z2;
285 <
286 <                return rotMat3;
287 <            }
288 <
289 <    };//end Quaternion
266 >    /**
267 >       create a unit quaternion from axis angle representation
268 >    */
269 >    Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
270 >                                   const Real& angle){
271 >      Vector3<Real> v(axis);
272 >      v.normalize();
273 >      Real half_angle = angle*0.5;
274 >      Real sin_a = sin(half_angle);
275 >      *this = Quaternion<Real>(cos(half_angle),
276 >                               v.x()*sin_a,
277 >                               v.y()*sin_a,
278 >                               v.z()*sin_a);
279 >      return *this;
280 >    }
281 >    
282 >    /**
283 >       convert a quaternion to axis angle representation,
284 >       preserve the axis direction and angle from -PI to +PI
285 >    */
286 >    void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
287 >      Real vl = sqrt( x()*x() + y()*y() + z()*z() );
288 >      if( vl > tiny ) {
289 >        Real ivl = 1.0/vl;
290 >        axis.x() = x() * ivl;
291 >        axis.y() = y() * ivl;
292 >        axis.z() = z() * ivl;
293  
294 +        if( w() < 0 )
295 +          angle = 2.0*atan2(-vl, -w()); //-PI,0
296 +        else
297 +          angle = 2.0*atan2( vl,  w()); //0,PI
298 +      } else {
299 +        axis = Vector3<Real>(0.0,0.0,0.0);
300 +        angle = 0.0;
301 +      }
302 +    }
303  
304      /**
305 <     * Returns the vaule of scalar multiplication of this quaterion q (q * s).
306 <     * @return  the vaule of scalar multiplication of this vector
307 <     * @param q the source quaternion
308 <     * @param s the scalar value
309 <     */
310 <    template<typename Real, unsigned int Dim>                
311 <    Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {      
312 <        Quaternion<Real> result(q);
313 <        result.mul(s);
314 <        return result;          
305 >       shortest arc quaternion rotate one vector to another by shortest path.
306 >       create rotation from -> to, for any length vectors.
307 >    */
308 >    Quaternion<Real> fromShortestArc(const Vector3d& from,
309 >                                     const Vector3d& to ) {
310 >      
311 >      Vector3d c( cross(from,to) );
312 >      *this = Quaternion<Real>(dot(from,to),
313 >                               c.x(),
314 >                               c.y(),
315 >                               c.z());
316 >
317 >      this->normalize();    // if "from" or "to" not unit, normalize quat
318 >      w() += 1.0f;            // reducing angle to halfangle
319 >      if( w() <= 1e-6 ) {     // angle close to PI
320 >        if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
321 >          this->data_[0] =  w();    
322 >          this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0))
323 >          this->data_[2] =  from.z();
324 >          this->data_[3] = -from.y();
325 >        } else {
326 >          this->data_[0] =  w();
327 >          this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1))
328 >          this->data_[2] = -from.x();
329 >          this->data_[3] =  0.0;
330 >        }
331 >      }
332 >      this->normalize();
333      }
299    
300    /**
301     * Returns the vaule of scalar multiplication of this quaterion q (q * s).
302     * @return  the vaule of scalar multiplication of this vector
303     * @param s the scalar value
304     * @param q the source quaternion
305     */  
306    template<typename Real, unsigned int Dim>
307    Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
308        Quaternion<Real> result(q);
309        result.mul(s);
310        return result;          
311    }    
334  
335 <    /**
336 <     * Returns the multiplication of two quaternion
315 <     * @return the multiplication of two quaternion
316 <     * @param q1 the first quaternion
317 <     * @param q2 the second quaternion
318 <     */
319 <    template<typename Real>
320 <    inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
321 <        Quaternion<Real> result(q1);
322 <        result *= q2;
323 <        return result;
335 >    Real ComputeTwist(const Quaternion& q) {
336 >      return  (Real)2.0 * atan2(q.z(), q.w());
337      }
338  
339 +    void RemoveTwist(Quaternion& q) {
340 +      Real t = ComputeTwist(q);
341 +      Quaternion rt = fromAxisAngle(V3Z, t);
342 +      
343 +      q *= rt.inverse();
344 +    }
345 +
346 +    void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
347 +                                Vector3<Real>& swingAxis) {
348 +      
349 +      twistAngle = (Real)2.0 * atan2(z(), w());
350 +      Quaternion rt, rs;
351 +      rt.fromAxisAngle(V3Z, twistAngle);
352 +      rs = *this * rt.inverse();
353 +      
354 +      Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
355 +      if( vl > tiny ) {
356 +        Real ivl = 1.0 / vl;
357 +        swingAxis.x() = rs.x() * ivl;
358 +        swingAxis.y() = rs.y() * ivl;
359 +        swingAxis.z() = rs.z() * ivl;
360 +
361 +        if( rs.w() < 0.0 )
362 +          swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
363 +        else
364 +          swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI
365 +      } else {
366 +        swingAxis = Vector3<Real>(1.0,0.0,0.0);
367 +        swingAngle = 0.0;
368 +      }          
369 +    }
370 +
371 +
372 +    Vector3<Real> rotate(const Vector3<Real>& v) {
373 +
374 +      Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
375 +                         v.y() * w() + v.x() * z() - v.z() * x(),
376 +                         v.z() * w() + v.y() * x() - v.x() * y(),
377 +                         v.x() * x() + v.y() * y() + v.z() * z());
378 +
379 +      return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
380 +                           w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
381 +                           w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
382 +        ( 1.0/this->lengthSquare() );      
383 +    }  
384 +
385 +    Quaternion<Real>& align (const Vector3<Real>& V1,
386 +                             const Vector3<Real>& V2) {
387 +
388 +      // If V1 and V2 are not parallel, the axis of rotation is the unit-length
389 +      // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation,
390 +      // A, is the angle between V1 and V2.  The quaternion for the rotation is
391 +      // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
392 +      //
393 +      // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
394 +      //     compute sin(A/2) and cos(A/2), we reduce the computational costs
395 +      //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
396 +      //     Dot(V1,B).
397 +      //
398 +      // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
399 +      //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
400 +      //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
401 +      //     C = Cross(V1,B).
402 +      //
403 +      // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2,
404 +      // then B = 0.  This can happen even if V1 is approximately -V2 using
405 +      // floating point arithmetic, since Vector3::Normalize checks for
406 +      // closeness to zero and returns the zero vector accordingly.  The test
407 +      // for exactly zero is usually not recommend for floating point
408 +      // arithmetic, but the implementation of Vector3::Normalize guarantees
409 +      // the comparison is robust.  In this case, the A = pi and any axis
410 +      // perpendicular to V1 may be used as the rotation axis.
411 +
412 +      Vector3<Real> Bisector = V1 + V2;
413 +      Bisector.normalize();
414 +
415 +      Real CosHalfAngle = dot(V1,Bisector);
416 +
417 +      this->data_[0] = CosHalfAngle;
418 +
419 +      if (CosHalfAngle != (Real)0.0) {
420 +        Vector3<Real> Cross = cross(V1, Bisector);
421 +        this->data_[1] = Cross.x();
422 +        this->data_[2] = Cross.y();
423 +        this->data_[3] = Cross.z();
424 +      } else {
425 +        Real InvLength;
426 +        if (fabs(V1[0]) >= fabs(V1[1])) {
427 +          // V1.x or V1.z is the largest magnitude component
428 +          InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
429 +
430 +          this->data_[1] = -V1[2]*InvLength;
431 +          this->data_[2] = (Real)0.0;
432 +          this->data_[3] = +V1[0]*InvLength;
433 +        } else {
434 +          // V1.y or V1.z is the largest magnitude component
435 +          InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
436 +          
437 +          this->data_[1] = (Real)0.0;
438 +          this->data_[2] = +V1[2]*InvLength;
439 +          this->data_[3] = -V1[1]*InvLength;
440 +        }
441 +      }
442 +      return *this;
443 +    }
444 +
445 +    void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
446 +      
447 +      // First test if the swing is in the singularity:
448 +
449 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
450 +
451 +      // Decompose into twist-swing by solving the equation:
452 +      //
453 +      //                       Qtwist(t*2) * Qswing(s*2) = q
454 +      //
455 +      // note: (x,y) is the normalized swing axis (x*x+y*y=1)
456 +      //
457 +      //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
458 +      //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1)
459 +      // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
460 +      //
461 +      // The swing rotation/2 s comes from:
462 +      //
463 +      // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>  
464 +      //                                       Cs = sqrt ( qw^2 + qz^2 ) (3)
465 +      //
466 +      // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
467 +      //                                       Ss = sqrt ( qx^2 + qy^2 ) (4)
468 +      // From (1):  |SsCt -StSs| |x| = |qx|
469 +      //            |StSs +SsCt| |y|   |qy|                              (5)
470 +
471 +      Real qw, qx, qy, qz;
472 +      
473 +      if ( w()<0 ) {
474 +        qw=-w();
475 +        qx=-x();
476 +        qy=-y();
477 +        qz=-z();
478 +      } else {
479 +        qw=w();
480 +        qx=x();
481 +        qy=y();
482 +        qz=z();
483 +      }
484 +      
485 +      Real t = atan2 ( qz, qw ); // from (2)
486 +      Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
487 +                                                              // and (4)
488 +
489 +      Real x=0.0, y=0.0, sins=sin(s);
490 +
491 +      if ( !ISZERO(sins,tiny) ) {
492 +        Real sint = sin(t);
493 +        Real cost = cos(t);
494 +        
495 +        // by solving the linear system in (5):
496 +        y = (-qx*sint + qy*cost)/sins;
497 +        x = ( qx*cost + qy*sint)/sins;
498 +      }
499 +
500 +      tw = (Real)2.0*t;
501 +      sx = (Real)2.0*x*s;
502 +      sy = (Real)2.0*y*s;
503 +    }
504 +
505 +    void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
506 +
507 +      // Decompose q into swing-twist using a similar development as
508 +      // in function toTwistSwing
509 +
510 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
511 +      
512 +      Real qw, qx, qy, qz;
513 +      if ( w() < 0 ){
514 +        qw=-w();
515 +        qx=-x();
516 +        qy=-y();
517 +        qz=-z();
518 +      } else {
519 +        qw=w();
520 +        qx=x();
521 +        qy=y();
522 +        qz=z();
523 +      }
524 +
525 +      // Get the twist t:
526 +      Real t = 2.0 * atan2(qz,qw);
527 +      
528 +      Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
529 +      Real gam = t/2.0;
530 +      Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
531 +      Real singam = sin(gam);
532 +      Real cosgam = cos(gam);
533 +
534 +      sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
535 +      sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
536 +      tw = Real( t );
537 +    }
538 +      
539 +    
540 +    
541      /**
542 <     * Returns the division of two quaternion
543 <     * @param q1 divisor
329 <     * @param q2 dividen
542 >     * Returns the corresponding rotation matrix (3x3)
543 >     * @return a 3x3 rotation matrix
544       */
545 +    SquareMatrix<Real, 3> toRotationMatrix3() {
546 +      SquareMatrix<Real, 3> rotMat3;
547 +      
548 +      Real w2;
549 +      Real x2;
550 +      Real y2;
551 +      Real z2;
552  
553 <    template<typename Real>
554 <    inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) {
555 <        return q1 * q2.inverse();
553 >      if (!this->isNormalized())
554 >        this->normalize();
555 >                
556 >      w2 = w() * w();
557 >      x2 = x() * x();
558 >      y2 = y() * y();
559 >      z2 = z() * z();
560 >
561 >      rotMat3(0, 0) = w2 + x2 - y2 - z2;
562 >      rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
563 >      rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
564 >
565 >      rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
566 >      rotMat3(1, 1) = w2 - x2 + y2 - z2;
567 >      rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
568 >
569 >      rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
570 >      rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
571 >      rotMat3(2, 2) = w2 - x2 -y2 +z2;
572 >
573 >      return rotMat3;
574      }
575  
576 +  };//end Quaternion
577 +
578 +
579      /**
580 <     * Returns the value of the division of a scalar by a quaternion
581 <     * @return the value of the division of a scalar by a quaternion
582 <     * @param s scalar
583 <     * @param q quaternion
342 <     * @note for a quaternion q, 1/q = q.inverse()
580 >     * Returns the vaule of scalar multiplication of this quaterion q (q * s).
581 >     * @return  the vaule of scalar multiplication of this vector
582 >     * @param q the source quaternion
583 >     * @param s the scalar value
584       */
585 <    template<typename Real>
586 <    Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) {
585 >  template<typename Real, unsigned int Dim>                
586 >  Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {      
587 >    Quaternion<Real> result(q);
588 >    result.mul(s);
589 >    return result;          
590 >  }
591 >    
592 >  /**
593 >   * Returns the vaule of scalar multiplication of this quaterion q (q * s).
594 >   * @return  the vaule of scalar multiplication of this vector
595 >   * @param s the scalar value
596 >   * @param q the source quaternion
597 >   */  
598 >  template<typename Real, unsigned int Dim>
599 >  Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
600 >    Quaternion<Real> result(q);
601 >    result.mul(s);
602 >    return result;          
603 >  }    
604  
605 <        Quaternion<Real> x;
606 <        x = q.inverse();
607 <        x *= s;
608 <        return x;
609 <    }
605 >  /**
606 >   * Returns the multiplication of two quaternion
607 >   * @return the multiplication of two quaternion
608 >   * @param q1 the first quaternion
609 >   * @param q2 the second quaternion
610 >   */
611 >  template<typename Real>
612 >  inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
613 >    Quaternion<Real> result(q1);
614 >    result *= q2;
615 >    return result;
616 >  }
617 >
618 >  /**
619 >   * Returns the division of two quaternion
620 >   * @param q1 divisor
621 >   * @param q2 dividen
622 >   */
623 >
624 >  template<typename Real>
625 >  inline Quaternion<Real> operator /( Quaternion<Real>& q1,  Quaternion<Real>& q2) {
626 >    return q1 * q2.inverse();
627 >  }
628 >
629 >  /**
630 >   * Returns the value of the division of a scalar by a quaternion
631 >   * @return the value of the division of a scalar by a quaternion
632 >   * @param s scalar
633 >   * @param q quaternion
634 >   * @note for a quaternion q, 1/q = q.inverse()
635 >   */
636 >  template<typename Real>
637 >  Quaternion<Real> operator /(const Real& s,  Quaternion<Real>& q) {
638 >
639 >    Quaternion<Real> x;
640 >    x = q.inverse();
641 >    x *= s;
642 >    return x;
643 >  }
644      
645 <    template <class T>
646 <    inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
647 <        return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
648 <    }
645 >  template <class T>
646 >  inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
647 >    return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
648 >  }
649      
650 <    typedef Quaternion<double> Quat4d;
650 >  typedef Quaternion<RealType> Quat4d;
651   }
652   #endif //MATH_QUATERNION_HPP

Comparing:
trunk/src/math/Quaternion.hpp (property svn:keywords), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/math/Quaternion.hpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines