1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Quaternion.hpp |
45 |
* @author Teng Lin |
46 |
* @date 10/11/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef MATH_QUATERNION_HPP |
51 |
#define MATH_QUATERNION_HPP |
52 |
|
53 |
#include "math/Vector3.hpp" |
54 |
#include "math/SquareMatrix.hpp" |
55 |
#define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) |
56 |
const RealType tiny=1.0e-6; |
57 |
|
58 |
namespace OpenMD{ |
59 |
|
60 |
/** |
61 |
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
62 |
* Quaternion is a sort of a higher-level complex number. |
63 |
* It is defined as Q = w + x*i + y*j + z*k, |
64 |
* where w, x, y, and z are numbers of type T (e.g. RealType), and |
65 |
* i*i = -1; j*j = -1; k*k = -1; |
66 |
* i*j = k; j*k = i; k*i = j; |
67 |
*/ |
68 |
template<typename Real> |
69 |
class Quaternion : public Vector<Real, 4> { |
70 |
|
71 |
public: |
72 |
Quaternion() : Vector<Real, 4>() {} |
73 |
|
74 |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
75 |
Quaternion(Real w, Real x, Real y, Real z) { |
76 |
this->data_[0] = w; |
77 |
this->data_[1] = x; |
78 |
this->data_[2] = y; |
79 |
this->data_[3] = z; |
80 |
} |
81 |
|
82 |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
83 |
Quaternion(const Vector<Real,4>& v) |
84 |
: Vector<Real, 4>(v){ |
85 |
} |
86 |
|
87 |
/** copy assignment */ |
88 |
Quaternion& operator =(const Vector<Real, 4>& v){ |
89 |
if (this == & v) |
90 |
return *this; |
91 |
|
92 |
Vector<Real, 4>::operator=(v); |
93 |
|
94 |
return *this; |
95 |
} |
96 |
|
97 |
/** |
98 |
* Returns the value of the first element of this quaternion. |
99 |
* @return the value of the first element of this quaternion |
100 |
*/ |
101 |
Real w() const { |
102 |
return this->data_[0]; |
103 |
} |
104 |
|
105 |
/** |
106 |
* Returns the reference of the first element of this quaternion. |
107 |
* @return the reference of the first element of this quaternion |
108 |
*/ |
109 |
Real& w() { |
110 |
return this->data_[0]; |
111 |
} |
112 |
|
113 |
/** |
114 |
* Returns the value of the first element of this quaternion. |
115 |
* @return the value of the first element of this quaternion |
116 |
*/ |
117 |
Real x() const { |
118 |
return this->data_[1]; |
119 |
} |
120 |
|
121 |
/** |
122 |
* Returns the reference of the second element of this quaternion. |
123 |
* @return the reference of the second element of this quaternion |
124 |
*/ |
125 |
Real& x() { |
126 |
return this->data_[1]; |
127 |
} |
128 |
|
129 |
/** |
130 |
* Returns the value of the thirf element of this quaternion. |
131 |
* @return the value of the third element of this quaternion |
132 |
*/ |
133 |
Real y() const { |
134 |
return this->data_[2]; |
135 |
} |
136 |
|
137 |
/** |
138 |
* Returns the reference of the third element of this quaternion. |
139 |
* @return the reference of the third element of this quaternion |
140 |
*/ |
141 |
Real& y() { |
142 |
return this->data_[2]; |
143 |
} |
144 |
|
145 |
/** |
146 |
* Returns the value of the fourth element of this quaternion. |
147 |
* @return the value of the fourth element of this quaternion |
148 |
*/ |
149 |
Real z() const { |
150 |
return this->data_[3]; |
151 |
} |
152 |
/** |
153 |
* Returns the reference of the fourth element of this quaternion. |
154 |
* @return the reference of the fourth element of this quaternion |
155 |
*/ |
156 |
Real& z() { |
157 |
return this->data_[3]; |
158 |
} |
159 |
|
160 |
/** |
161 |
* Tests if this quaternion is equal to other quaternion |
162 |
* @return true if equal, otherwise return false |
163 |
* @param q quaternion to be compared |
164 |
*/ |
165 |
inline bool operator ==(const Quaternion<Real>& q) { |
166 |
|
167 |
for (unsigned int i = 0; i < 4; i ++) { |
168 |
if (!equal(this->data_[i], q[i])) { |
169 |
return false; |
170 |
} |
171 |
} |
172 |
|
173 |
return true; |
174 |
} |
175 |
|
176 |
/** |
177 |
* Returns the inverse of this quaternion |
178 |
* @return inverse |
179 |
* @note since quaternion is a complex number, the inverse of quaternion |
180 |
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
181 |
*/ |
182 |
Quaternion<Real> inverse() { |
183 |
Quaternion<Real> q; |
184 |
Real d = this->lengthSquare(); |
185 |
|
186 |
q.w() = w() / d; |
187 |
q.x() = -x() / d; |
188 |
q.y() = -y() / d; |
189 |
q.z() = -z() / d; |
190 |
|
191 |
return q; |
192 |
} |
193 |
|
194 |
/** |
195 |
* Sets the value to the multiplication of itself and another quaternion |
196 |
* @param q the other quaternion |
197 |
*/ |
198 |
void mul(const Quaternion<Real>& q) { |
199 |
Quaternion<Real> tmp(*this); |
200 |
|
201 |
this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
202 |
this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
203 |
this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
204 |
this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
205 |
} |
206 |
|
207 |
void mul(const Real& s) { |
208 |
this->data_[0] *= s; |
209 |
this->data_[1] *= s; |
210 |
this->data_[2] *= s; |
211 |
this->data_[3] *= s; |
212 |
} |
213 |
|
214 |
/** Set the value of this quaternion to the division of itself by another quaternion */ |
215 |
void div(Quaternion<Real>& q) { |
216 |
mul(q.inverse()); |
217 |
} |
218 |
|
219 |
void div(const Real& s) { |
220 |
this->data_[0] /= s; |
221 |
this->data_[1] /= s; |
222 |
this->data_[2] /= s; |
223 |
this->data_[3] /= s; |
224 |
} |
225 |
|
226 |
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
227 |
mul(q); |
228 |
return *this; |
229 |
} |
230 |
|
231 |
Quaternion<Real>& operator *=(const Real& s) { |
232 |
mul(s); |
233 |
return *this; |
234 |
} |
235 |
|
236 |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
237 |
*this *= q.inverse(); |
238 |
return *this; |
239 |
} |
240 |
|
241 |
Quaternion<Real>& operator /=(const Real& s) { |
242 |
div(s); |
243 |
return *this; |
244 |
} |
245 |
/** |
246 |
* Returns the conjugate quaternion of this quaternion |
247 |
* @return the conjugate quaternion of this quaternion |
248 |
*/ |
249 |
Quaternion<Real> conjugate() const { |
250 |
return Quaternion<Real>(w(), -x(), -y(), -z()); |
251 |
} |
252 |
|
253 |
|
254 |
/** |
255 |
return rotation angle from -PI to PI |
256 |
*/ |
257 |
inline Real get_rotation_angle() const{ |
258 |
if( w() < (Real)0.0 ) |
259 |
return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); |
260 |
else |
261 |
return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() ); |
262 |
} |
263 |
|
264 |
/** |
265 |
create a unit quaternion from axis angle representation |
266 |
*/ |
267 |
Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, |
268 |
const Real& angle){ |
269 |
Vector3<Real> v(axis); |
270 |
v.normalize(); |
271 |
Real half_angle = angle*0.5; |
272 |
Real sin_a = sin(half_angle); |
273 |
*this = Quaternion<Real>(cos(half_angle), |
274 |
v.x()*sin_a, |
275 |
v.y()*sin_a, |
276 |
v.z()*sin_a); |
277 |
return *this; |
278 |
} |
279 |
|
280 |
/** |
281 |
convert a quaternion to axis angle representation, |
282 |
preserve the axis direction and angle from -PI to +PI |
283 |
*/ |
284 |
void toAxisAngle(Vector3<Real>& axis, Real& angle)const { |
285 |
Real vl = sqrt( x()*x() + y()*y() + z()*z() ); |
286 |
if( vl > tiny ) { |
287 |
Real ivl = 1.0/vl; |
288 |
axis.x() = x() * ivl; |
289 |
axis.y() = y() * ivl; |
290 |
axis.z() = z() * ivl; |
291 |
|
292 |
if( w() < 0 ) |
293 |
angle = 2.0*atan2(-vl, -w()); //-PI,0 |
294 |
else |
295 |
angle = 2.0*atan2( vl, w()); //0,PI |
296 |
} else { |
297 |
axis = Vector3<Real>(0.0,0.0,0.0); |
298 |
angle = 0.0; |
299 |
} |
300 |
} |
301 |
|
302 |
/** |
303 |
shortest arc quaternion rotate one vector to another by shortest path. |
304 |
create rotation from -> to, for any length vectors. |
305 |
*/ |
306 |
Quaternion<Real> fromShortestArc(const Vector3d& from, |
307 |
const Vector3d& to ) { |
308 |
|
309 |
Vector3d c( cross(from,to) ); |
310 |
*this = Quaternion<Real>(dot(from,to), |
311 |
c.x(), |
312 |
c.y(), |
313 |
c.z()); |
314 |
|
315 |
this->normalize(); // if "from" or "to" not unit, normalize quat |
316 |
w() += 1.0f; // reducing angle to halfangle |
317 |
if( w() <= 1e-6 ) { // angle close to PI |
318 |
if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { |
319 |
this->data_[0] = w(); |
320 |
this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0)) |
321 |
this->data_[2] = from.z(); |
322 |
this->data_[3] = -from.y(); |
323 |
} else { |
324 |
this->data_[0] = w(); |
325 |
this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1)) |
326 |
this->data_[2] = -from.x(); |
327 |
this->data_[3] = 0.0; |
328 |
} |
329 |
} |
330 |
this->normalize(); |
331 |
} |
332 |
|
333 |
Real ComputeTwist(const Quaternion& q) { |
334 |
return (Real)2.0 * atan2(q.z(), q.w()); |
335 |
} |
336 |
|
337 |
void RemoveTwist(Quaternion& q) { |
338 |
Real t = ComputeTwist(q); |
339 |
Quaternion rt = fromAxisAngle(V3Z, t); |
340 |
|
341 |
q *= rt.inverse(); |
342 |
} |
343 |
|
344 |
void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, |
345 |
Vector3<Real>& swingAxis) { |
346 |
|
347 |
twistAngle = (Real)2.0 * atan2(z(), w()); |
348 |
Quaternion rt, rs; |
349 |
rt.fromAxisAngle(V3Z, twistAngle); |
350 |
rs = *this * rt.inverse(); |
351 |
|
352 |
Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); |
353 |
if( vl > tiny ) { |
354 |
Real ivl = 1.0 / vl; |
355 |
swingAxis.x() = rs.x() * ivl; |
356 |
swingAxis.y() = rs.y() * ivl; |
357 |
swingAxis.z() = rs.z() * ivl; |
358 |
|
359 |
if( rs.w() < 0.0 ) |
360 |
swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 |
361 |
else |
362 |
swingAngle = 2.0*atan2( vl, rs.w()); //0,PI |
363 |
} else { |
364 |
swingAxis = Vector3<Real>(1.0,0.0,0.0); |
365 |
swingAngle = 0.0; |
366 |
} |
367 |
} |
368 |
|
369 |
|
370 |
Vector3<Real> rotate(const Vector3<Real>& v) { |
371 |
|
372 |
Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), |
373 |
v.y() * w() + v.x() * z() - v.z() * x(), |
374 |
v.z() * w() + v.y() * x() - v.x() * y(), |
375 |
v.x() * x() + v.y() * y() + v.z() * z()); |
376 |
|
377 |
return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), |
378 |
w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), |
379 |
w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* |
380 |
( 1.0/this->lengthSquare() ); |
381 |
} |
382 |
|
383 |
Quaternion<Real>& align (const Vector3<Real>& V1, |
384 |
const Vector3<Real>& V2) { |
385 |
|
386 |
// If V1 and V2 are not parallel, the axis of rotation is the unit-length |
387 |
// vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation, |
388 |
// A, is the angle between V1 and V2. The quaternion for the rotation is |
389 |
// q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). |
390 |
// |
391 |
// (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then |
392 |
// compute sin(A/2) and cos(A/2), we reduce the computational costs |
393 |
// by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = |
394 |
// Dot(V1,B). |
395 |
// |
396 |
// (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but |
397 |
// Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in |
398 |
// which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where |
399 |
// C = Cross(V1,B). |
400 |
// |
401 |
// If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2, |
402 |
// then B = 0. This can happen even if V1 is approximately -V2 using |
403 |
// floating point arithmetic, since Vector3::Normalize checks for |
404 |
// closeness to zero and returns the zero vector accordingly. The test |
405 |
// for exactly zero is usually not recommend for floating point |
406 |
// arithmetic, but the implementation of Vector3::Normalize guarantees |
407 |
// the comparison is robust. In this case, the A = pi and any axis |
408 |
// perpendicular to V1 may be used as the rotation axis. |
409 |
|
410 |
Vector3<Real> Bisector = V1 + V2; |
411 |
Bisector.normalize(); |
412 |
|
413 |
Real CosHalfAngle = dot(V1,Bisector); |
414 |
|
415 |
this->data_[0] = CosHalfAngle; |
416 |
|
417 |
if (CosHalfAngle != (Real)0.0) { |
418 |
Vector3<Real> Cross = cross(V1, Bisector); |
419 |
this->data_[1] = Cross.x(); |
420 |
this->data_[2] = Cross.y(); |
421 |
this->data_[3] = Cross.z(); |
422 |
} else { |
423 |
Real InvLength; |
424 |
if (fabs(V1[0]) >= fabs(V1[1])) { |
425 |
// V1.x or V1.z is the largest magnitude component |
426 |
InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); |
427 |
|
428 |
this->data_[1] = -V1[2]*InvLength; |
429 |
this->data_[2] = (Real)0.0; |
430 |
this->data_[3] = +V1[0]*InvLength; |
431 |
} else { |
432 |
// V1.y or V1.z is the largest magnitude component |
433 |
InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); |
434 |
|
435 |
this->data_[1] = (Real)0.0; |
436 |
this->data_[2] = +V1[2]*InvLength; |
437 |
this->data_[3] = -V1[1]*InvLength; |
438 |
} |
439 |
} |
440 |
return *this; |
441 |
} |
442 |
|
443 |
void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { |
444 |
|
445 |
// First test if the swing is in the singularity: |
446 |
|
447 |
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } |
448 |
|
449 |
// Decompose into twist-swing by solving the equation: |
450 |
// |
451 |
// Qtwist(t*2) * Qswing(s*2) = q |
452 |
// |
453 |
// note: (x,y) is the normalized swing axis (x*x+y*y=1) |
454 |
// |
455 |
// ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) |
456 |
// ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1) |
457 |
// From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) |
458 |
// |
459 |
// The swing rotation/2 s comes from: |
460 |
// |
461 |
// From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => |
462 |
// Cs = sqrt ( qw^2 + qz^2 ) (3) |
463 |
// |
464 |
// From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => |
465 |
// Ss = sqrt ( qx^2 + qy^2 ) (4) |
466 |
// From (1): |SsCt -StSs| |x| = |qx| |
467 |
// |StSs +SsCt| |y| |qy| (5) |
468 |
|
469 |
Real qw, qx, qy, qz; |
470 |
|
471 |
if ( w()<0 ) { |
472 |
qw=-w(); |
473 |
qx=-x(); |
474 |
qy=-y(); |
475 |
qz=-z(); |
476 |
} else { |
477 |
qw=w(); |
478 |
qx=x(); |
479 |
qy=y(); |
480 |
qz=z(); |
481 |
} |
482 |
|
483 |
Real t = atan2 ( qz, qw ); // from (2) |
484 |
Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) |
485 |
// and (4) |
486 |
|
487 |
Real x=0.0, y=0.0, sins=sin(s); |
488 |
|
489 |
if ( !ISZERO(sins,tiny) ) { |
490 |
Real sint = sin(t); |
491 |
Real cost = cos(t); |
492 |
|
493 |
// by solving the linear system in (5): |
494 |
y = (-qx*sint + qy*cost)/sins; |
495 |
x = ( qx*cost + qy*sint)/sins; |
496 |
} |
497 |
|
498 |
tw = (Real)2.0*t; |
499 |
sx = (Real)2.0*x*s; |
500 |
sy = (Real)2.0*y*s; |
501 |
} |
502 |
|
503 |
void toSwingTwist(Real& sx, Real& sy, Real& tw ) { |
504 |
|
505 |
// Decompose q into swing-twist using a similar development as |
506 |
// in function toTwistSwing |
507 |
|
508 |
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } |
509 |
|
510 |
Real qw, qx, qy, qz; |
511 |
if ( w() < 0 ){ |
512 |
qw=-w(); |
513 |
qx=-x(); |
514 |
qy=-y(); |
515 |
qz=-z(); |
516 |
} else { |
517 |
qw=w(); |
518 |
qx=x(); |
519 |
qy=y(); |
520 |
qz=z(); |
521 |
} |
522 |
|
523 |
// Get the twist t: |
524 |
Real t = 2.0 * atan2(qz,qw); |
525 |
|
526 |
Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); |
527 |
Real gam = t/2.0; |
528 |
Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; |
529 |
Real singam = sin(gam); |
530 |
Real cosgam = cos(gam); |
531 |
|
532 |
sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); |
533 |
sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); |
534 |
tw = Real( t ); |
535 |
} |
536 |
|
537 |
|
538 |
|
539 |
/** |
540 |
* Returns the corresponding rotation matrix (3x3) |
541 |
* @return a 3x3 rotation matrix |
542 |
*/ |
543 |
SquareMatrix<Real, 3> toRotationMatrix3() { |
544 |
SquareMatrix<Real, 3> rotMat3; |
545 |
|
546 |
Real w2; |
547 |
Real x2; |
548 |
Real y2; |
549 |
Real z2; |
550 |
|
551 |
if (!this->isNormalized()) |
552 |
this->normalize(); |
553 |
|
554 |
w2 = w() * w(); |
555 |
x2 = x() * x(); |
556 |
y2 = y() * y(); |
557 |
z2 = z() * z(); |
558 |
|
559 |
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
560 |
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
561 |
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
562 |
|
563 |
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
564 |
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
565 |
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
566 |
|
567 |
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
568 |
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
569 |
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
570 |
|
571 |
return rotMat3; |
572 |
} |
573 |
|
574 |
};//end Quaternion |
575 |
|
576 |
|
577 |
/** |
578 |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
579 |
* @return the vaule of scalar multiplication of this vector |
580 |
* @param q the source quaternion |
581 |
* @param s the scalar value |
582 |
*/ |
583 |
template<typename Real, unsigned int Dim> |
584 |
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
585 |
Quaternion<Real> result(q); |
586 |
result.mul(s); |
587 |
return result; |
588 |
} |
589 |
|
590 |
/** |
591 |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
592 |
* @return the vaule of scalar multiplication of this vector |
593 |
* @param s the scalar value |
594 |
* @param q the source quaternion |
595 |
*/ |
596 |
template<typename Real, unsigned int Dim> |
597 |
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
598 |
Quaternion<Real> result(q); |
599 |
result.mul(s); |
600 |
return result; |
601 |
} |
602 |
|
603 |
/** |
604 |
* Returns the multiplication of two quaternion |
605 |
* @return the multiplication of two quaternion |
606 |
* @param q1 the first quaternion |
607 |
* @param q2 the second quaternion |
608 |
*/ |
609 |
template<typename Real> |
610 |
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
611 |
Quaternion<Real> result(q1); |
612 |
result *= q2; |
613 |
return result; |
614 |
} |
615 |
|
616 |
/** |
617 |
* Returns the division of two quaternion |
618 |
* @param q1 divisor |
619 |
* @param q2 dividen |
620 |
*/ |
621 |
|
622 |
template<typename Real> |
623 |
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
624 |
return q1 * q2.inverse(); |
625 |
} |
626 |
|
627 |
/** |
628 |
* Returns the value of the division of a scalar by a quaternion |
629 |
* @return the value of the division of a scalar by a quaternion |
630 |
* @param s scalar |
631 |
* @param q quaternion |
632 |
* @note for a quaternion q, 1/q = q.inverse() |
633 |
*/ |
634 |
template<typename Real> |
635 |
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
636 |
|
637 |
Quaternion<Real> x; |
638 |
x = q.inverse(); |
639 |
x *= s; |
640 |
return x; |
641 |
} |
642 |
|
643 |
template <class T> |
644 |
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
645 |
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
646 |
} |
647 |
|
648 |
typedef Quaternion<RealType> Quat4d; |
649 |
} |
650 |
#endif //MATH_QUATERNION_HPP |