ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Quaternion.hpp
Revision: 1390
Committed: Wed Nov 25 20:02:06 2009 UTC (15 years, 5 months ago) by gezelter
Original Path: trunk/src/math/Quaternion.hpp
File size: 20487 byte(s)
Log Message:
Almost all of the changes necessary to create OpenMD out of our old
project (OOPSE-4)

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file Quaternion.hpp
44 * @author Teng Lin
45 * @date 10/11/2004
46 * @version 1.0
47 */
48
49 #ifndef MATH_QUATERNION_HPP
50 #define MATH_QUATERNION_HPP
51
52 #include "math/Vector3.hpp"
53 #include "math/SquareMatrix.hpp"
54 #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
55 const RealType tiny=1.0e-6;
56
57 namespace OpenMD{
58
59 /**
60 * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
61 * Quaternion is a sort of a higher-level complex number.
62 * It is defined as Q = w + x*i + y*j + z*k,
63 * where w, x, y, and z are numbers of type T (e.g. RealType), and
64 * i*i = -1; j*j = -1; k*k = -1;
65 * i*j = k; j*k = i; k*i = j;
66 */
67 template<typename Real>
68 class Quaternion : public Vector<Real, 4> {
69
70 public:
71 Quaternion() : Vector<Real, 4>() {}
72
73 /** Constructs and initializes a Quaternion from w, x, y, z values */
74 Quaternion(Real w, Real x, Real y, Real z) {
75 this->data_[0] = w;
76 this->data_[1] = x;
77 this->data_[2] = y;
78 this->data_[3] = z;
79 }
80
81 /** Constructs and initializes a Quaternion from a Vector<Real,4> */
82 Quaternion(const Vector<Real,4>& v)
83 : Vector<Real, 4>(v){
84 }
85
86 /** copy assignment */
87 Quaternion& operator =(const Vector<Real, 4>& v){
88 if (this == & v)
89 return *this;
90
91 Vector<Real, 4>::operator=(v);
92
93 return *this;
94 }
95
96 /**
97 * Returns the value of the first element of this quaternion.
98 * @return the value of the first element of this quaternion
99 */
100 Real w() const {
101 return this->data_[0];
102 }
103
104 /**
105 * Returns the reference of the first element of this quaternion.
106 * @return the reference of the first element of this quaternion
107 */
108 Real& w() {
109 return this->data_[0];
110 }
111
112 /**
113 * Returns the value of the first element of this quaternion.
114 * @return the value of the first element of this quaternion
115 */
116 Real x() const {
117 return this->data_[1];
118 }
119
120 /**
121 * Returns the reference of the second element of this quaternion.
122 * @return the reference of the second element of this quaternion
123 */
124 Real& x() {
125 return this->data_[1];
126 }
127
128 /**
129 * Returns the value of the thirf element of this quaternion.
130 * @return the value of the third element of this quaternion
131 */
132 Real y() const {
133 return this->data_[2];
134 }
135
136 /**
137 * Returns the reference of the third element of this quaternion.
138 * @return the reference of the third element of this quaternion
139 */
140 Real& y() {
141 return this->data_[2];
142 }
143
144 /**
145 * Returns the value of the fourth element of this quaternion.
146 * @return the value of the fourth element of this quaternion
147 */
148 Real z() const {
149 return this->data_[3];
150 }
151 /**
152 * Returns the reference of the fourth element of this quaternion.
153 * @return the reference of the fourth element of this quaternion
154 */
155 Real& z() {
156 return this->data_[3];
157 }
158
159 /**
160 * Tests if this quaternion is equal to other quaternion
161 * @return true if equal, otherwise return false
162 * @param q quaternion to be compared
163 */
164 inline bool operator ==(const Quaternion<Real>& q) {
165
166 for (unsigned int i = 0; i < 4; i ++) {
167 if (!equal(this->data_[i], q[i])) {
168 return false;
169 }
170 }
171
172 return true;
173 }
174
175 /**
176 * Returns the inverse of this quaternion
177 * @return inverse
178 * @note since quaternion is a complex number, the inverse of quaternion
179 * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
180 */
181 Quaternion<Real> inverse() {
182 Quaternion<Real> q;
183 Real d = this->lengthSquare();
184
185 q.w() = w() / d;
186 q.x() = -x() / d;
187 q.y() = -y() / d;
188 q.z() = -z() / d;
189
190 return q;
191 }
192
193 /**
194 * Sets the value to the multiplication of itself and another quaternion
195 * @param q the other quaternion
196 */
197 void mul(const Quaternion<Real>& q) {
198 Quaternion<Real> tmp(*this);
199
200 this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
201 this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
202 this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
203 this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);
204 }
205
206 void mul(const Real& s) {
207 this->data_[0] *= s;
208 this->data_[1] *= s;
209 this->data_[2] *= s;
210 this->data_[3] *= s;
211 }
212
213 /** Set the value of this quaternion to the division of itself by another quaternion */
214 void div(Quaternion<Real>& q) {
215 mul(q.inverse());
216 }
217
218 void div(const Real& s) {
219 this->data_[0] /= s;
220 this->data_[1] /= s;
221 this->data_[2] /= s;
222 this->data_[3] /= s;
223 }
224
225 Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
226 mul(q);
227 return *this;
228 }
229
230 Quaternion<Real>& operator *=(const Real& s) {
231 mul(s);
232 return *this;
233 }
234
235 Quaternion<Real>& operator /=(Quaternion<Real>& q) {
236 *this *= q.inverse();
237 return *this;
238 }
239
240 Quaternion<Real>& operator /=(const Real& s) {
241 div(s);
242 return *this;
243 }
244 /**
245 * Returns the conjugate quaternion of this quaternion
246 * @return the conjugate quaternion of this quaternion
247 */
248 Quaternion<Real> conjugate() const {
249 return Quaternion<Real>(w(), -x(), -y(), -z());
250 }
251
252
253 /**
254 return rotation angle from -PI to PI
255 */
256 inline Real get_rotation_angle() const{
257 if( w < (Real)0.0 )
258 return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
259 else
260 return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() );
261 }
262
263 /**
264 create a unit quaternion from axis angle representation
265 */
266 Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
267 const Real& angle){
268 Vector3<Real> v(axis);
269 v.normalize();
270 Real half_angle = angle*0.5;
271 Real sin_a = sin(half_angle);
272 *this = Quaternion<Real>(cos(half_angle),
273 v.x()*sin_a,
274 v.y()*sin_a,
275 v.z()*sin_a);
276 return *this;
277 }
278
279 /**
280 convert a quaternion to axis angle representation,
281 preserve the axis direction and angle from -PI to +PI
282 */
283 void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
284 Real vl = sqrt( x()*x() + y()*y() + z()*z() );
285 if( vl > tiny ) {
286 Real ivl = 1.0/vl;
287 axis.x() = x() * ivl;
288 axis.y() = y() * ivl;
289 axis.z() = z() * ivl;
290
291 if( w() < 0 )
292 angle = 2.0*atan2(-vl, -w()); //-PI,0
293 else
294 angle = 2.0*atan2( vl, w()); //0,PI
295 } else {
296 axis = Vector3<Real>(0.0,0.0,0.0);
297 angle = 0.0;
298 }
299 }
300
301 /**
302 shortest arc quaternion rotate one vector to another by shortest path.
303 create rotation from -> to, for any length vectors.
304 */
305 Quaternion<Real> fromShortestArc(const Vector3d& from,
306 const Vector3d& to ) {
307
308 Vector3d c( cross(from,to) );
309 *this = Quaternion<Real>(dot(from,to),
310 c.x(),
311 c.y(),
312 c.z());
313
314 this->normalize(); // if "from" or "to" not unit, normalize quat
315 w += 1.0f; // reducing angle to halfangle
316 if( w <= 1e-6 ) { // angle close to PI
317 if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
318 this->data_[0] = w;
319 this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0))
320 this->data_[2] = from.z();
321 this->data_[3] = -from.y();
322 } else {
323 this->data_[0] = w;
324 this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1))
325 this->data_[2] = -from.x();
326 this->data_[3] = 0.0;
327 }
328 }
329 this->normalize();
330 }
331
332 Real ComputeTwist(const Quaternion& q) {
333 return (Real)2.0 * atan2(q.z(), q.w());
334 }
335
336 void RemoveTwist(Quaternion& q) {
337 Real t = ComputeTwist(q);
338 Quaternion rt = fromAxisAngle(V3Z, t);
339
340 q *= rt.inverse();
341 }
342
343 void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
344 Vector3<Real>& swingAxis) {
345
346 twistAngle = (Real)2.0 * atan2(z(), w());
347 Quaternion rt, rs;
348 rt.fromAxisAngle(V3Z, twistAngle);
349 rs = *this * rt.inverse();
350
351 Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
352 if( vl > tiny ) {
353 Real ivl = 1.0 / vl;
354 swingAxis.x() = rs.x() * ivl;
355 swingAxis.y() = rs.y() * ivl;
356 swingAxis.z() = rs.z() * ivl;
357
358 if( rs.w() < 0.0 )
359 swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
360 else
361 swingAngle = 2.0*atan2( vl, rs.w()); //0,PI
362 } else {
363 swingAxis = Vector3<Real>(1.0,0.0,0.0);
364 swingAngle = 0.0;
365 }
366 }
367
368
369 Vector3<Real> rotate(const Vector3<Real>& v) {
370
371 Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
372 v.y() * w() + v.x() * z() - v.z() * x(),
373 v.z() * w() + v.y() * x() - v.x() * y(),
374 v.x() * x() + v.y() * y() + v.z() * z());
375
376 return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
377 w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
378 w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
379 ( 1.0/this->lengthSquare() );
380 }
381
382 Quaternion<Real>& align (const Vector3<Real>& V1,
383 const Vector3<Real>& V2) {
384
385 // If V1 and V2 are not parallel, the axis of rotation is the unit-length
386 // vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation,
387 // A, is the angle between V1 and V2. The quaternion for the rotation is
388 // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
389 //
390 // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
391 // compute sin(A/2) and cos(A/2), we reduce the computational costs
392 // by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
393 // Dot(V1,B).
394 //
395 // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
396 // Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
397 // which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
398 // C = Cross(V1,B).
399 //
400 // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2,
401 // then B = 0. This can happen even if V1 is approximately -V2 using
402 // floating point arithmetic, since Vector3::Normalize checks for
403 // closeness to zero and returns the zero vector accordingly. The test
404 // for exactly zero is usually not recommend for floating point
405 // arithmetic, but the implementation of Vector3::Normalize guarantees
406 // the comparison is robust. In this case, the A = pi and any axis
407 // perpendicular to V1 may be used as the rotation axis.
408
409 Vector3<Real> Bisector = V1 + V2;
410 Bisector.normalize();
411
412 Real CosHalfAngle = dot(V1,Bisector);
413
414 this->data_[0] = CosHalfAngle;
415
416 if (CosHalfAngle != (Real)0.0) {
417 Vector3<Real> Cross = cross(V1, Bisector);
418 this->data_[1] = Cross.x();
419 this->data_[2] = Cross.y();
420 this->data_[3] = Cross.z();
421 } else {
422 Real InvLength;
423 if (fabs(V1[0]) >= fabs(V1[1])) {
424 // V1.x or V1.z is the largest magnitude component
425 InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
426
427 this->data_[1] = -V1[2]*InvLength;
428 this->data_[2] = (Real)0.0;
429 this->data_[3] = +V1[0]*InvLength;
430 } else {
431 // V1.y or V1.z is the largest magnitude component
432 InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
433
434 this->data_[1] = (Real)0.0;
435 this->data_[2] = +V1[2]*InvLength;
436 this->data_[3] = -V1[1]*InvLength;
437 }
438 }
439 return *this;
440 }
441
442 void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
443
444 // First test if the swing is in the singularity:
445
446 if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
447
448 // Decompose into twist-swing by solving the equation:
449 //
450 // Qtwist(t*2) * Qswing(s*2) = q
451 //
452 // note: (x,y) is the normalized swing axis (x*x+y*y=1)
453 //
454 // ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
455 // ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1)
456 // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
457 //
458 // The swing rotation/2 s comes from:
459 //
460 // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>
461 // Cs = sqrt ( qw^2 + qz^2 ) (3)
462 //
463 // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
464 // Ss = sqrt ( qx^2 + qy^2 ) (4)
465 // From (1): |SsCt -StSs| |x| = |qx|
466 // |StSs +SsCt| |y| |qy| (5)
467
468 Real qw, qx, qy, qz;
469
470 if ( w()<0 ) {
471 qw=-w();
472 qx=-x();
473 qy=-y();
474 qz=-z();
475 } else {
476 qw=w();
477 qx=x();
478 qy=y();
479 qz=z();
480 }
481
482 Real t = atan2 ( qz, qw ); // from (2)
483 Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
484 // and (4)
485
486 Real x=0.0, y=0.0, sins=sin(s);
487
488 if ( !ISZERO(sins,tiny) ) {
489 Real sint = sin(t);
490 Real cost = cos(t);
491
492 // by solving the linear system in (5):
493 y = (-qx*sint + qy*cost)/sins;
494 x = ( qx*cost + qy*sint)/sins;
495 }
496
497 tw = (Real)2.0*t;
498 sx = (Real)2.0*x*s;
499 sy = (Real)2.0*y*s;
500 }
501
502 void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
503
504 // Decompose q into swing-twist using a similar development as
505 // in function toTwistSwing
506
507 if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
508
509 Real qw, qx, qy, qz;
510 if ( w() < 0 ){
511 qw=-w();
512 qx=-x();
513 qy=-y();
514 qz=-z();
515 } else {
516 qw=w();
517 qx=x();
518 qy=y();
519 qz=z();
520 }
521
522 // Get the twist t:
523 Real t = 2.0 * atan2(qz,qw);
524
525 Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
526 Real gam = t/2.0;
527 Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
528 Real singam = sin(gam);
529 Real cosgam = cos(gam);
530
531 sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
532 sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
533 tw = Real( t );
534 }
535
536
537
538 /**
539 * Returns the corresponding rotation matrix (3x3)
540 * @return a 3x3 rotation matrix
541 */
542 SquareMatrix<Real, 3> toRotationMatrix3() {
543 SquareMatrix<Real, 3> rotMat3;
544
545 Real w2;
546 Real x2;
547 Real y2;
548 Real z2;
549
550 if (!this->isNormalized())
551 this->normalize();
552
553 w2 = w() * w();
554 x2 = x() * x();
555 y2 = y() * y();
556 z2 = z() * z();
557
558 rotMat3(0, 0) = w2 + x2 - y2 - z2;
559 rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
560 rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
561
562 rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
563 rotMat3(1, 1) = w2 - x2 + y2 - z2;
564 rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
565
566 rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
567 rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
568 rotMat3(2, 2) = w2 - x2 -y2 +z2;
569
570 return rotMat3;
571 }
572
573 };//end Quaternion
574
575
576 /**
577 * Returns the vaule of scalar multiplication of this quaterion q (q * s).
578 * @return the vaule of scalar multiplication of this vector
579 * @param q the source quaternion
580 * @param s the scalar value
581 */
582 template<typename Real, unsigned int Dim>
583 Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {
584 Quaternion<Real> result(q);
585 result.mul(s);
586 return result;
587 }
588
589 /**
590 * Returns the vaule of scalar multiplication of this quaterion q (q * s).
591 * @return the vaule of scalar multiplication of this vector
592 * @param s the scalar value
593 * @param q the source quaternion
594 */
595 template<typename Real, unsigned int Dim>
596 Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
597 Quaternion<Real> result(q);
598 result.mul(s);
599 return result;
600 }
601
602 /**
603 * Returns the multiplication of two quaternion
604 * @return the multiplication of two quaternion
605 * @param q1 the first quaternion
606 * @param q2 the second quaternion
607 */
608 template<typename Real>
609 inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
610 Quaternion<Real> result(q1);
611 result *= q2;
612 return result;
613 }
614
615 /**
616 * Returns the division of two quaternion
617 * @param q1 divisor
618 * @param q2 dividen
619 */
620
621 template<typename Real>
622 inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) {
623 return q1 * q2.inverse();
624 }
625
626 /**
627 * Returns the value of the division of a scalar by a quaternion
628 * @return the value of the division of a scalar by a quaternion
629 * @param s scalar
630 * @param q quaternion
631 * @note for a quaternion q, 1/q = q.inverse()
632 */
633 template<typename Real>
634 Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) {
635
636 Quaternion<Real> x;
637 x = q.inverse();
638 x *= s;
639 return x;
640 }
641
642 template <class T>
643 inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
644 return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
645 }
646
647 typedef Quaternion<RealType> Quat4d;
648 }
649 #endif //MATH_QUATERNION_HPP

Properties

Name Value
svn:executable *