1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
54 |
|
|
55 |
|
namespace oopse{ |
56 |
|
|
57 |
< |
/** |
58 |
< |
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
59 |
< |
* Quaternion is a sort of a higher-level complex number. |
60 |
< |
* It is defined as Q = w + x*i + y*j + z*k, |
61 |
< |
* where w, x, y, and z are numbers of type T (e.g. double), and |
62 |
< |
* i*i = -1; j*j = -1; k*k = -1; |
63 |
< |
* i*j = k; j*k = i; k*i = j; |
64 |
< |
*/ |
65 |
< |
template<typename Real> |
66 |
< |
class Quaternion : public Vector<Real, 4> { |
67 |
< |
public: |
68 |
< |
Quaternion() : Vector<Real, 4>() {} |
57 |
> |
/** |
58 |
> |
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
59 |
> |
* Quaternion is a sort of a higher-level complex number. |
60 |
> |
* It is defined as Q = w + x*i + y*j + z*k, |
61 |
> |
* where w, x, y, and z are numbers of type T (e.g. RealType), and |
62 |
> |
* i*i = -1; j*j = -1; k*k = -1; |
63 |
> |
* i*j = k; j*k = i; k*i = j; |
64 |
> |
*/ |
65 |
> |
template<typename Real> |
66 |
> |
class Quaternion : public Vector<Real, 4> { |
67 |
> |
public: |
68 |
> |
Quaternion() : Vector<Real, 4>() {} |
69 |
|
|
70 |
< |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
71 |
< |
Quaternion(Real w, Real x, Real y, Real z) { |
72 |
< |
this->data_[0] = w; |
73 |
< |
this->data_[1] = x; |
74 |
< |
this->data_[2] = y; |
75 |
< |
this->data_[3] = z; |
76 |
< |
} |
70 |
> |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
71 |
> |
Quaternion(Real w, Real x, Real y, Real z) { |
72 |
> |
this->data_[0] = w; |
73 |
> |
this->data_[1] = x; |
74 |
> |
this->data_[2] = y; |
75 |
> |
this->data_[3] = z; |
76 |
> |
} |
77 |
|
|
78 |
< |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
79 |
< |
Quaternion(const Vector<Real,4>& v) |
80 |
< |
: Vector<Real, 4>(v){ |
81 |
< |
} |
78 |
> |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
79 |
> |
Quaternion(const Vector<Real,4>& v) |
80 |
> |
: Vector<Real, 4>(v){ |
81 |
> |
} |
82 |
|
|
83 |
< |
/** copy assignment */ |
84 |
< |
Quaternion& operator =(const Vector<Real, 4>& v){ |
85 |
< |
if (this == & v) |
86 |
< |
return *this; |
83 |
> |
/** copy assignment */ |
84 |
> |
Quaternion& operator =(const Vector<Real, 4>& v){ |
85 |
> |
if (this == & v) |
86 |
> |
return *this; |
87 |
|
|
88 |
< |
Vector<Real, 4>::operator=(v); |
88 |
> |
Vector<Real, 4>::operator=(v); |
89 |
|
|
90 |
< |
return *this; |
91 |
< |
} |
90 |
> |
return *this; |
91 |
> |
} |
92 |
|
|
93 |
< |
/** |
94 |
< |
* Returns the value of the first element of this quaternion. |
95 |
< |
* @return the value of the first element of this quaternion |
96 |
< |
*/ |
97 |
< |
Real w() const { |
98 |
< |
return this->data_[0]; |
99 |
< |
} |
93 |
> |
/** |
94 |
> |
* Returns the value of the first element of this quaternion. |
95 |
> |
* @return the value of the first element of this quaternion |
96 |
> |
*/ |
97 |
> |
Real w() const { |
98 |
> |
return this->data_[0]; |
99 |
> |
} |
100 |
|
|
101 |
< |
/** |
102 |
< |
* Returns the reference of the first element of this quaternion. |
103 |
< |
* @return the reference of the first element of this quaternion |
104 |
< |
*/ |
105 |
< |
Real& w() { |
106 |
< |
return this->data_[0]; |
107 |
< |
} |
101 |
> |
/** |
102 |
> |
* Returns the reference of the first element of this quaternion. |
103 |
> |
* @return the reference of the first element of this quaternion |
104 |
> |
*/ |
105 |
> |
Real& w() { |
106 |
> |
return this->data_[0]; |
107 |
> |
} |
108 |
|
|
109 |
< |
/** |
110 |
< |
* Returns the value of the first element of this quaternion. |
111 |
< |
* @return the value of the first element of this quaternion |
112 |
< |
*/ |
113 |
< |
Real x() const { |
114 |
< |
return this->data_[1]; |
115 |
< |
} |
109 |
> |
/** |
110 |
> |
* Returns the value of the first element of this quaternion. |
111 |
> |
* @return the value of the first element of this quaternion |
112 |
> |
*/ |
113 |
> |
Real x() const { |
114 |
> |
return this->data_[1]; |
115 |
> |
} |
116 |
|
|
117 |
< |
/** |
118 |
< |
* Returns the reference of the second element of this quaternion. |
119 |
< |
* @return the reference of the second element of this quaternion |
120 |
< |
*/ |
121 |
< |
Real& x() { |
122 |
< |
return this->data_[1]; |
123 |
< |
} |
117 |
> |
/** |
118 |
> |
* Returns the reference of the second element of this quaternion. |
119 |
> |
* @return the reference of the second element of this quaternion |
120 |
> |
*/ |
121 |
> |
Real& x() { |
122 |
> |
return this->data_[1]; |
123 |
> |
} |
124 |
|
|
125 |
< |
/** |
126 |
< |
* Returns the value of the thirf element of this quaternion. |
127 |
< |
* @return the value of the third element of this quaternion |
128 |
< |
*/ |
129 |
< |
Real y() const { |
130 |
< |
return this->data_[2]; |
131 |
< |
} |
125 |
> |
/** |
126 |
> |
* Returns the value of the thirf element of this quaternion. |
127 |
> |
* @return the value of the third element of this quaternion |
128 |
> |
*/ |
129 |
> |
Real y() const { |
130 |
> |
return this->data_[2]; |
131 |
> |
} |
132 |
|
|
133 |
< |
/** |
134 |
< |
* Returns the reference of the third element of this quaternion. |
135 |
< |
* @return the reference of the third element of this quaternion |
136 |
< |
*/ |
137 |
< |
Real& y() { |
138 |
< |
return this->data_[2]; |
139 |
< |
} |
133 |
> |
/** |
134 |
> |
* Returns the reference of the third element of this quaternion. |
135 |
> |
* @return the reference of the third element of this quaternion |
136 |
> |
*/ |
137 |
> |
Real& y() { |
138 |
> |
return this->data_[2]; |
139 |
> |
} |
140 |
|
|
141 |
< |
/** |
142 |
< |
* Returns the value of the fourth element of this quaternion. |
143 |
< |
* @return the value of the fourth element of this quaternion |
144 |
< |
*/ |
145 |
< |
Real z() const { |
146 |
< |
return this->data_[3]; |
147 |
< |
} |
148 |
< |
/** |
149 |
< |
* Returns the reference of the fourth element of this quaternion. |
150 |
< |
* @return the reference of the fourth element of this quaternion |
151 |
< |
*/ |
152 |
< |
Real& z() { |
153 |
< |
return this->data_[3]; |
154 |
< |
} |
141 |
> |
/** |
142 |
> |
* Returns the value of the fourth element of this quaternion. |
143 |
> |
* @return the value of the fourth element of this quaternion |
144 |
> |
*/ |
145 |
> |
Real z() const { |
146 |
> |
return this->data_[3]; |
147 |
> |
} |
148 |
> |
/** |
149 |
> |
* Returns the reference of the fourth element of this quaternion. |
150 |
> |
* @return the reference of the fourth element of this quaternion |
151 |
> |
*/ |
152 |
> |
Real& z() { |
153 |
> |
return this->data_[3]; |
154 |
> |
} |
155 |
|
|
156 |
< |
/** |
157 |
< |
* Tests if this quaternion is equal to other quaternion |
158 |
< |
* @return true if equal, otherwise return false |
159 |
< |
* @param q quaternion to be compared |
160 |
< |
*/ |
161 |
< |
inline bool operator ==(const Quaternion<Real>& q) { |
156 |
> |
/** |
157 |
> |
* Tests if this quaternion is equal to other quaternion |
158 |
> |
* @return true if equal, otherwise return false |
159 |
> |
* @param q quaternion to be compared |
160 |
> |
*/ |
161 |
> |
inline bool operator ==(const Quaternion<Real>& q) { |
162 |
|
|
163 |
< |
for (unsigned int i = 0; i < 4; i ++) { |
164 |
< |
if (!equal(this->data_[i], q[i])) { |
165 |
< |
return false; |
166 |
< |
} |
167 |
< |
} |
163 |
> |
for (unsigned int i = 0; i < 4; i ++) { |
164 |
> |
if (!equal(this->data_[i], q[i])) { |
165 |
> |
return false; |
166 |
> |
} |
167 |
> |
} |
168 |
|
|
169 |
< |
return true; |
170 |
< |
} |
169 |
> |
return true; |
170 |
> |
} |
171 |
|
|
172 |
< |
/** |
173 |
< |
* Returns the inverse of this quaternion |
174 |
< |
* @return inverse |
175 |
< |
* @note since quaternion is a complex number, the inverse of quaternion |
176 |
< |
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
177 |
< |
*/ |
178 |
< |
Quaternion<Real> inverse() { |
179 |
< |
Quaternion<Real> q; |
180 |
< |
Real d = this->lengthSquare(); |
172 |
> |
/** |
173 |
> |
* Returns the inverse of this quaternion |
174 |
> |
* @return inverse |
175 |
> |
* @note since quaternion is a complex number, the inverse of quaternion |
176 |
> |
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
177 |
> |
*/ |
178 |
> |
Quaternion<Real> inverse() { |
179 |
> |
Quaternion<Real> q; |
180 |
> |
Real d = this->lengthSquare(); |
181 |
|
|
182 |
< |
q.w() = w() / d; |
183 |
< |
q.x() = -x() / d; |
184 |
< |
q.y() = -y() / d; |
185 |
< |
q.z() = -z() / d; |
182 |
> |
q.w() = w() / d; |
183 |
> |
q.x() = -x() / d; |
184 |
> |
q.y() = -y() / d; |
185 |
> |
q.z() = -z() / d; |
186 |
|
|
187 |
< |
return q; |
188 |
< |
} |
187 |
> |
return q; |
188 |
> |
} |
189 |
|
|
190 |
< |
/** |
191 |
< |
* Sets the value to the multiplication of itself and another quaternion |
192 |
< |
* @param q the other quaternion |
193 |
< |
*/ |
194 |
< |
void mul(const Quaternion<Real>& q) { |
195 |
< |
Quaternion<Real> tmp(*this); |
190 |
> |
/** |
191 |
> |
* Sets the value to the multiplication of itself and another quaternion |
192 |
> |
* @param q the other quaternion |
193 |
> |
*/ |
194 |
> |
void mul(const Quaternion<Real>& q) { |
195 |
> |
Quaternion<Real> tmp(*this); |
196 |
|
|
197 |
< |
this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
198 |
< |
this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
199 |
< |
this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
200 |
< |
this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
201 |
< |
} |
197 |
> |
this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
198 |
> |
this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
199 |
> |
this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
200 |
> |
this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
201 |
> |
} |
202 |
|
|
203 |
< |
void mul(const Real& s) { |
204 |
< |
this->data_[0] *= s; |
205 |
< |
this->data_[1] *= s; |
206 |
< |
this->data_[2] *= s; |
207 |
< |
this->data_[3] *= s; |
208 |
< |
} |
203 |
> |
void mul(const Real& s) { |
204 |
> |
this->data_[0] *= s; |
205 |
> |
this->data_[1] *= s; |
206 |
> |
this->data_[2] *= s; |
207 |
> |
this->data_[3] *= s; |
208 |
> |
} |
209 |
|
|
210 |
< |
/** Set the value of this quaternion to the division of itself by another quaternion */ |
211 |
< |
void div(Quaternion<Real>& q) { |
212 |
< |
mul(q.inverse()); |
213 |
< |
} |
214 |
< |
|
215 |
< |
void div(const Real& s) { |
216 |
< |
this->data_[0] /= s; |
217 |
< |
this->data_[1] /= s; |
218 |
< |
this->data_[2] /= s; |
219 |
< |
this->data_[3] /= s; |
220 |
< |
} |
210 |
> |
/** Set the value of this quaternion to the division of itself by another quaternion */ |
211 |
> |
void div(Quaternion<Real>& q) { |
212 |
> |
mul(q.inverse()); |
213 |
> |
} |
214 |
> |
|
215 |
> |
void div(const Real& s) { |
216 |
> |
this->data_[0] /= s; |
217 |
> |
this->data_[1] /= s; |
218 |
> |
this->data_[2] /= s; |
219 |
> |
this->data_[3] /= s; |
220 |
> |
} |
221 |
|
|
222 |
< |
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
223 |
< |
mul(q); |
224 |
< |
return *this; |
225 |
< |
} |
222 |
> |
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
223 |
> |
mul(q); |
224 |
> |
return *this; |
225 |
> |
} |
226 |
|
|
227 |
< |
Quaternion<Real>& operator *=(const Real& s) { |
228 |
< |
mul(s); |
229 |
< |
return *this; |
230 |
< |
} |
227 |
> |
Quaternion<Real>& operator *=(const Real& s) { |
228 |
> |
mul(s); |
229 |
> |
return *this; |
230 |
> |
} |
231 |
|
|
232 |
< |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
233 |
< |
*this *= q.inverse(); |
234 |
< |
return *this; |
235 |
< |
} |
232 |
> |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
233 |
> |
*this *= q.inverse(); |
234 |
> |
return *this; |
235 |
> |
} |
236 |
|
|
237 |
< |
Quaternion<Real>& operator /=(const Real& s) { |
238 |
< |
div(s); |
239 |
< |
return *this; |
240 |
< |
} |
241 |
< |
/** |
242 |
< |
* Returns the conjugate quaternion of this quaternion |
243 |
< |
* @return the conjugate quaternion of this quaternion |
244 |
< |
*/ |
245 |
< |
Quaternion<Real> conjugate() { |
246 |
< |
return Quaternion<Real>(w(), -x(), -y(), -z()); |
247 |
< |
} |
237 |
> |
Quaternion<Real>& operator /=(const Real& s) { |
238 |
> |
div(s); |
239 |
> |
return *this; |
240 |
> |
} |
241 |
> |
/** |
242 |
> |
* Returns the conjugate quaternion of this quaternion |
243 |
> |
* @return the conjugate quaternion of this quaternion |
244 |
> |
*/ |
245 |
> |
Quaternion<Real> conjugate() { |
246 |
> |
return Quaternion<Real>(w(), -x(), -y(), -z()); |
247 |
> |
} |
248 |
|
|
249 |
< |
/** |
250 |
< |
* Returns the corresponding rotation matrix (3x3) |
251 |
< |
* @return a 3x3 rotation matrix |
252 |
< |
*/ |
253 |
< |
SquareMatrix<Real, 3> toRotationMatrix3() { |
254 |
< |
SquareMatrix<Real, 3> rotMat3; |
249 |
> |
/** |
250 |
> |
* Returns the corresponding rotation matrix (3x3) |
251 |
> |
* @return a 3x3 rotation matrix |
252 |
> |
*/ |
253 |
> |
SquareMatrix<Real, 3> toRotationMatrix3() { |
254 |
> |
SquareMatrix<Real, 3> rotMat3; |
255 |
|
|
256 |
< |
Real w2; |
257 |
< |
Real x2; |
258 |
< |
Real y2; |
259 |
< |
Real z2; |
256 |
> |
Real w2; |
257 |
> |
Real x2; |
258 |
> |
Real y2; |
259 |
> |
Real z2; |
260 |
|
|
261 |
< |
if (!this->isNormalized()) |
262 |
< |
this->normalize(); |
261 |
> |
if (!this->isNormalized()) |
262 |
> |
this->normalize(); |
263 |
|
|
264 |
< |
w2 = w() * w(); |
265 |
< |
x2 = x() * x(); |
266 |
< |
y2 = y() * y(); |
267 |
< |
z2 = z() * z(); |
264 |
> |
w2 = w() * w(); |
265 |
> |
x2 = x() * x(); |
266 |
> |
y2 = y() * y(); |
267 |
> |
z2 = z() * z(); |
268 |
|
|
269 |
< |
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
270 |
< |
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
271 |
< |
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
269 |
> |
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
270 |
> |
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
271 |
> |
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
272 |
|
|
273 |
< |
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
274 |
< |
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
275 |
< |
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
273 |
> |
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
274 |
> |
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
275 |
> |
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
276 |
|
|
277 |
< |
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
278 |
< |
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
279 |
< |
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
277 |
> |
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
278 |
> |
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
279 |
> |
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
280 |
|
|
281 |
< |
return rotMat3; |
282 |
< |
} |
281 |
> |
return rotMat3; |
282 |
> |
} |
283 |
|
|
284 |
< |
};//end Quaternion |
284 |
> |
};//end Quaternion |
285 |
|
|
286 |
|
|
287 |
|
/** |
290 |
|
* @param q the source quaternion |
291 |
|
* @param s the scalar value |
292 |
|
*/ |
293 |
< |
template<typename Real, unsigned int Dim> |
294 |
< |
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
295 |
< |
Quaternion<Real> result(q); |
296 |
< |
result.mul(s); |
297 |
< |
return result; |
298 |
< |
} |
293 |
> |
template<typename Real, unsigned int Dim> |
294 |
> |
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
295 |
> |
Quaternion<Real> result(q); |
296 |
> |
result.mul(s); |
297 |
> |
return result; |
298 |
> |
} |
299 |
|
|
300 |
< |
/** |
301 |
< |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
302 |
< |
* @return the vaule of scalar multiplication of this vector |
303 |
< |
* @param s the scalar value |
304 |
< |
* @param q the source quaternion |
305 |
< |
*/ |
306 |
< |
template<typename Real, unsigned int Dim> |
307 |
< |
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
308 |
< |
Quaternion<Real> result(q); |
309 |
< |
result.mul(s); |
310 |
< |
return result; |
311 |
< |
} |
300 |
> |
/** |
301 |
> |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
302 |
> |
* @return the vaule of scalar multiplication of this vector |
303 |
> |
* @param s the scalar value |
304 |
> |
* @param q the source quaternion |
305 |
> |
*/ |
306 |
> |
template<typename Real, unsigned int Dim> |
307 |
> |
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
308 |
> |
Quaternion<Real> result(q); |
309 |
> |
result.mul(s); |
310 |
> |
return result; |
311 |
> |
} |
312 |
|
|
313 |
< |
/** |
314 |
< |
* Returns the multiplication of two quaternion |
315 |
< |
* @return the multiplication of two quaternion |
316 |
< |
* @param q1 the first quaternion |
317 |
< |
* @param q2 the second quaternion |
318 |
< |
*/ |
319 |
< |
template<typename Real> |
320 |
< |
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
321 |
< |
Quaternion<Real> result(q1); |
322 |
< |
result *= q2; |
323 |
< |
return result; |
324 |
< |
} |
313 |
> |
/** |
314 |
> |
* Returns the multiplication of two quaternion |
315 |
> |
* @return the multiplication of two quaternion |
316 |
> |
* @param q1 the first quaternion |
317 |
> |
* @param q2 the second quaternion |
318 |
> |
*/ |
319 |
> |
template<typename Real> |
320 |
> |
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
321 |
> |
Quaternion<Real> result(q1); |
322 |
> |
result *= q2; |
323 |
> |
return result; |
324 |
> |
} |
325 |
|
|
326 |
< |
/** |
327 |
< |
* Returns the division of two quaternion |
328 |
< |
* @param q1 divisor |
329 |
< |
* @param q2 dividen |
330 |
< |
*/ |
326 |
> |
/** |
327 |
> |
* Returns the division of two quaternion |
328 |
> |
* @param q1 divisor |
329 |
> |
* @param q2 dividen |
330 |
> |
*/ |
331 |
|
|
332 |
< |
template<typename Real> |
333 |
< |
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
334 |
< |
return q1 * q2.inverse(); |
335 |
< |
} |
332 |
> |
template<typename Real> |
333 |
> |
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
334 |
> |
return q1 * q2.inverse(); |
335 |
> |
} |
336 |
|
|
337 |
< |
/** |
338 |
< |
* Returns the value of the division of a scalar by a quaternion |
339 |
< |
* @return the value of the division of a scalar by a quaternion |
340 |
< |
* @param s scalar |
341 |
< |
* @param q quaternion |
342 |
< |
* @note for a quaternion q, 1/q = q.inverse() |
343 |
< |
*/ |
344 |
< |
template<typename Real> |
345 |
< |
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
337 |
> |
/** |
338 |
> |
* Returns the value of the division of a scalar by a quaternion |
339 |
> |
* @return the value of the division of a scalar by a quaternion |
340 |
> |
* @param s scalar |
341 |
> |
* @param q quaternion |
342 |
> |
* @note for a quaternion q, 1/q = q.inverse() |
343 |
> |
*/ |
344 |
> |
template<typename Real> |
345 |
> |
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
346 |
|
|
347 |
< |
Quaternion<Real> x; |
348 |
< |
x = q.inverse(); |
349 |
< |
x *= s; |
350 |
< |
return x; |
351 |
< |
} |
347 |
> |
Quaternion<Real> x; |
348 |
> |
x = q.inverse(); |
349 |
> |
x *= s; |
350 |
> |
return x; |
351 |
> |
} |
352 |
|
|
353 |
< |
template <class T> |
354 |
< |
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
355 |
< |
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
356 |
< |
} |
353 |
> |
template <class T> |
354 |
> |
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
355 |
> |
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
356 |
> |
} |
357 |
|
|
358 |
< |
typedef Quaternion<double> Quat4d; |
358 |
> |
typedef Quaternion<RealType> Quat4d; |
359 |
|
} |
360 |
|
#endif //MATH_QUATERNION_HPP |