ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Quaternion.hpp
(Generate patch)

Comparing:
trunk/src/math/Quaternion.hpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/math/Quaternion.hpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 49 | Line 50
50   #ifndef MATH_QUATERNION_HPP
51   #define MATH_QUATERNION_HPP
52  
53 < #include "math/Vector.hpp"
53 > #include "math/Vector3.hpp"
54   #include "math/SquareMatrix.hpp"
55 + #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
56 + const RealType tiny=1.0e-6;    
57  
58 < namespace oopse{
58 > namespace OpenMD{
59  
60    /**
61     * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
62     * Quaternion is a sort of a higher-level complex number.
63     * It is defined as Q = w + x*i + y*j + z*k,
64 <   * where w, x, y, and z are numbers of type T (e.g. double), and
64 >   * where w, x, y, and z are numbers of type T (e.g. RealType), and
65     * i*i = -1; j*j = -1; k*k = -1;
66     * i*j = k; j*k = i; k*i = j;
67     */
68    template<typename Real>
69    class Quaternion : public Vector<Real, 4> {
70 +
71    public:
72      Quaternion() : Vector<Real, 4>() {}
73  
# Line 78 | Line 82 | namespace oopse{
82      /** Constructs and initializes a Quaternion from a  Vector<Real,4> */    
83      Quaternion(const Vector<Real,4>& v)
84        : Vector<Real, 4>(v){
85 <      }
85 >    }
86  
87      /** copy assignment */
88      Quaternion& operator =(const Vector<Real, 4>& v){
89        if (this == & v)
90          return *this;
91 <
91 >      
92        Vector<Real, 4>::operator=(v);
93 <                
93 >      
94        return *this;
95      }
96 <
96 >    
97      /**
98       * Returns the value of the first element of this quaternion.
99       * @return the value of the first element of this quaternion
# Line 242 | Line 246 | namespace oopse{
246       * Returns the conjugate quaternion of this quaternion
247       * @return the conjugate quaternion of this quaternion
248       */
249 <    Quaternion<Real> conjugate() {
249 >    Quaternion<Real> conjugate() const {
250        return Quaternion<Real>(w(), -x(), -y(), -z());            
251 +    }
252 +
253 +
254 +    /**
255 +       return rotation angle from -PI to PI
256 +    */
257 +    inline Real get_rotation_angle() const{
258 +      if( w < (Real)0.0 )
259 +        return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
260 +      else
261 +        return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ),  w() );
262 +    }
263 +
264 +    /**
265 +       create a unit quaternion from axis angle representation
266 +    */
267 +    Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
268 +                                   const Real& angle){
269 +      Vector3<Real> v(axis);
270 +      v.normalize();
271 +      Real half_angle = angle*0.5;
272 +      Real sin_a = sin(half_angle);
273 +      *this = Quaternion<Real>(cos(half_angle),
274 +                               v.x()*sin_a,
275 +                               v.y()*sin_a,
276 +                               v.z()*sin_a);
277 +      return *this;
278 +    }
279 +    
280 +    /**
281 +       convert a quaternion to axis angle representation,
282 +       preserve the axis direction and angle from -PI to +PI
283 +    */
284 +    void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
285 +      Real vl = sqrt( x()*x() + y()*y() + z()*z() );
286 +      if( vl > tiny ) {
287 +        Real ivl = 1.0/vl;
288 +        axis.x() = x() * ivl;
289 +        axis.y() = y() * ivl;
290 +        axis.z() = z() * ivl;
291 +
292 +        if( w() < 0 )
293 +          angle = 2.0*atan2(-vl, -w()); //-PI,0
294 +        else
295 +          angle = 2.0*atan2( vl,  w()); //0,PI
296 +      } else {
297 +        axis = Vector3<Real>(0.0,0.0,0.0);
298 +        angle = 0.0;
299 +      }
300 +    }
301 +
302 +    /**
303 +       shortest arc quaternion rotate one vector to another by shortest path.
304 +       create rotation from -> to, for any length vectors.
305 +    */
306 +    Quaternion<Real> fromShortestArc(const Vector3d& from,
307 +                                     const Vector3d& to ) {
308 +      
309 +      Vector3d c( cross(from,to) );
310 +      *this = Quaternion<Real>(dot(from,to),
311 +                               c.x(),
312 +                               c.y(),
313 +                               c.z());
314 +
315 +      this->normalize();    // if "from" or "to" not unit, normalize quat
316 +      w += 1.0f;            // reducing angle to halfangle
317 +      if( w <= 1e-6 ) {     // angle close to PI
318 +        if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
319 +          this->data_[0] =  w;    
320 +          this->data_[1] =  0.0;       //cross(from , Vector3d(1,0,0))
321 +          this->data_[2] =  from.z();
322 +          this->data_[3] = -from.y();
323 +        } else {
324 +          this->data_[0] =  w;
325 +          this->data_[1] =  from.y();  //cross(from, Vector3d(0,0,1))
326 +          this->data_[2] = -from.x();
327 +          this->data_[3] =  0.0;
328 +        }
329 +      }
330 +      this->normalize();
331 +    }
332 +
333 +    Real ComputeTwist(const Quaternion& q) {
334 +      return  (Real)2.0 * atan2(q.z(), q.w());
335 +    }
336 +
337 +    void RemoveTwist(Quaternion& q) {
338 +      Real t = ComputeTwist(q);
339 +      Quaternion rt = fromAxisAngle(V3Z, t);
340 +      
341 +      q *= rt.inverse();
342 +    }
343 +
344 +    void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
345 +                                Vector3<Real>& swingAxis) {
346 +      
347 +      twistAngle = (Real)2.0 * atan2(z(), w());
348 +      Quaternion rt, rs;
349 +      rt.fromAxisAngle(V3Z, twistAngle);
350 +      rs = *this * rt.inverse();
351 +      
352 +      Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
353 +      if( vl > tiny ) {
354 +        Real ivl = 1.0 / vl;
355 +        swingAxis.x() = rs.x() * ivl;
356 +        swingAxis.y() = rs.y() * ivl;
357 +        swingAxis.z() = rs.z() * ivl;
358 +
359 +        if( rs.w() < 0.0 )
360 +          swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
361 +        else
362 +          swingAngle = 2.0*atan2( vl,  rs.w()); //0,PI
363 +      } else {
364 +        swingAxis = Vector3<Real>(1.0,0.0,0.0);
365 +        swingAngle = 0.0;
366 +      }          
367 +    }
368 +
369 +
370 +    Vector3<Real> rotate(const Vector3<Real>& v) {
371 +
372 +      Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
373 +                         v.y() * w() + v.x() * z() - v.z() * x(),
374 +                         v.z() * w() + v.y() * x() - v.x() * y(),
375 +                         v.x() * x() + v.y() * y() + v.z() * z());
376 +
377 +      return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
378 +                           w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
379 +                           w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
380 +        ( 1.0/this->lengthSquare() );      
381 +    }  
382 +
383 +    Quaternion<Real>& align (const Vector3<Real>& V1,
384 +                             const Vector3<Real>& V2) {
385 +
386 +      // If V1 and V2 are not parallel, the axis of rotation is the unit-length
387 +      // vector U = Cross(V1,V2)/Length(Cross(V1,V2)).  The angle of rotation,
388 +      // A, is the angle between V1 and V2.  The quaternion for the rotation is
389 +      // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
390 +      //
391 +      // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
392 +      //     compute sin(A/2) and cos(A/2), we reduce the computational costs
393 +      //     by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
394 +      //     Dot(V1,B).
395 +      //
396 +      // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
397 +      //     Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
398 +      //     which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
399 +      //     C = Cross(V1,B).
400 +      //
401 +      // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0).  If V1 = -V2,
402 +      // then B = 0.  This can happen even if V1 is approximately -V2 using
403 +      // floating point arithmetic, since Vector3::Normalize checks for
404 +      // closeness to zero and returns the zero vector accordingly.  The test
405 +      // for exactly zero is usually not recommend for floating point
406 +      // arithmetic, but the implementation of Vector3::Normalize guarantees
407 +      // the comparison is robust.  In this case, the A = pi and any axis
408 +      // perpendicular to V1 may be used as the rotation axis.
409 +
410 +      Vector3<Real> Bisector = V1 + V2;
411 +      Bisector.normalize();
412 +
413 +      Real CosHalfAngle = dot(V1,Bisector);
414 +
415 +      this->data_[0] = CosHalfAngle;
416 +
417 +      if (CosHalfAngle != (Real)0.0) {
418 +        Vector3<Real> Cross = cross(V1, Bisector);
419 +        this->data_[1] = Cross.x();
420 +        this->data_[2] = Cross.y();
421 +        this->data_[3] = Cross.z();
422 +      } else {
423 +        Real InvLength;
424 +        if (fabs(V1[0]) >= fabs(V1[1])) {
425 +          // V1.x or V1.z is the largest magnitude component
426 +          InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
427 +
428 +          this->data_[1] = -V1[2]*InvLength;
429 +          this->data_[2] = (Real)0.0;
430 +          this->data_[3] = +V1[0]*InvLength;
431 +        } else {
432 +          // V1.y or V1.z is the largest magnitude component
433 +          InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
434 +          
435 +          this->data_[1] = (Real)0.0;
436 +          this->data_[2] = +V1[2]*InvLength;
437 +          this->data_[3] = -V1[1]*InvLength;
438 +        }
439 +      }
440 +      return *this;
441      }
442  
443 +    void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
444 +      
445 +      // First test if the swing is in the singularity:
446 +
447 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
448 +
449 +      // Decompose into twist-swing by solving the equation:
450 +      //
451 +      //                       Qtwist(t*2) * Qswing(s*2) = q
452 +      //
453 +      // note: (x,y) is the normalized swing axis (x*x+y*y=1)
454 +      //
455 +      //          ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
456 +      //  ( CtCs  xSsCt-yStSs  xStSs+ySsCt  StCs ) = ( qw qx qy qz )      (1)
457 +      // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
458 +      //
459 +      // The swing rotation/2 s comes from:
460 +      //
461 +      // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>  
462 +      //                                       Cs = sqrt ( qw^2 + qz^2 ) (3)
463 +      //
464 +      // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
465 +      //                                       Ss = sqrt ( qx^2 + qy^2 ) (4)
466 +      // From (1):  |SsCt -StSs| |x| = |qx|
467 +      //            |StSs +SsCt| |y|   |qy|                              (5)
468 +
469 +      Real qw, qx, qy, qz;
470 +      
471 +      if ( w()<0 ) {
472 +        qw=-w();
473 +        qx=-x();
474 +        qy=-y();
475 +        qz=-z();
476 +      } else {
477 +        qw=w();
478 +        qx=x();
479 +        qy=y();
480 +        qz=z();
481 +      }
482 +      
483 +      Real t = atan2 ( qz, qw ); // from (2)
484 +      Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
485 +                                                              // and (4)
486 +
487 +      Real x=0.0, y=0.0, sins=sin(s);
488 +
489 +      if ( !ISZERO(sins,tiny) ) {
490 +        Real sint = sin(t);
491 +        Real cost = cos(t);
492 +        
493 +        // by solving the linear system in (5):
494 +        y = (-qx*sint + qy*cost)/sins;
495 +        x = ( qx*cost + qy*sint)/sins;
496 +      }
497 +
498 +      tw = (Real)2.0*t;
499 +      sx = (Real)2.0*x*s;
500 +      sy = (Real)2.0*y*s;
501 +    }
502 +
503 +    void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
504 +
505 +      // Decompose q into swing-twist using a similar development as
506 +      // in function toTwistSwing
507 +
508 +      if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
509 +      
510 +      Real qw, qx, qy, qz;
511 +      if ( w() < 0 ){
512 +        qw=-w();
513 +        qx=-x();
514 +        qy=-y();
515 +        qz=-z();
516 +      } else {
517 +        qw=w();
518 +        qx=x();
519 +        qy=y();
520 +        qz=z();
521 +      }
522 +
523 +      // Get the twist t:
524 +      Real t = 2.0 * atan2(qz,qw);
525 +      
526 +      Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
527 +      Real gam = t/2.0;
528 +      Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
529 +      Real singam = sin(gam);
530 +      Real cosgam = cos(gam);
531 +
532 +      sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
533 +      sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
534 +      tw = Real( t );
535 +    }
536 +      
537 +    
538 +    
539      /**
540       * Returns the corresponding rotation matrix (3x3)
541       * @return a 3x3 rotation matrix
542       */
543      SquareMatrix<Real, 3> toRotationMatrix3() {
544        SquareMatrix<Real, 3> rotMat3;
545 <
545 >      
546        Real w2;
547        Real x2;
548        Real y2;
# Line 355 | Line 645 | namespace oopse{
645      return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
646    }
647      
648 <  typedef Quaternion<double> Quat4d;
648 >  typedef Quaternion<RealType> Quat4d;
649   }
650   #endif //MATH_QUATERNION_HPP

Comparing:
trunk/src/math/Quaternion.hpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/math/Quaternion.hpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines