1 |
gezelter |
246 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
tim |
92 |
* |
4 |
gezelter |
246 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
tim |
92 |
*/ |
41 |
gezelter |
246 |
|
42 |
tim |
92 |
/** |
43 |
|
|
* @file Quaternion.hpp |
44 |
|
|
* @author Teng Lin |
45 |
|
|
* @date 10/11/2004 |
46 |
|
|
* @version 1.0 |
47 |
|
|
*/ |
48 |
|
|
|
49 |
|
|
#ifndef MATH_QUATERNION_HPP |
50 |
|
|
#define MATH_QUATERNION_HPP |
51 |
|
|
|
52 |
tim |
93 |
#include "math/Vector.hpp" |
53 |
tim |
110 |
#include "math/SquareMatrix.hpp" |
54 |
tim |
93 |
|
55 |
tim |
92 |
namespace oopse{ |
56 |
|
|
|
57 |
|
|
/** |
58 |
|
|
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
59 |
tim |
93 |
* Quaternion is a sort of a higher-level complex number. |
60 |
|
|
* It is defined as Q = w + x*i + y*j + z*k, |
61 |
|
|
* where w, x, y, and z are numbers of type T (e.g. double), and |
62 |
|
|
* i*i = -1; j*j = -1; k*k = -1; |
63 |
|
|
* i*j = k; j*k = i; k*i = j; |
64 |
tim |
92 |
*/ |
65 |
|
|
template<typename Real> |
66 |
|
|
class Quaternion : public Vector<Real, 4> { |
67 |
tim |
93 |
public: |
68 |
tim |
110 |
Quaternion() : Vector<Real, 4>() {} |
69 |
tim |
92 |
|
70 |
tim |
93 |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
71 |
|
|
Quaternion(Real w, Real x, Real y, Real z) { |
72 |
tim |
385 |
this->data_[0] = w; |
73 |
|
|
this->data_[1] = x; |
74 |
|
|
this->data_[2] = y; |
75 |
|
|
this->data_[3] = z; |
76 |
tim |
93 |
} |
77 |
|
|
|
78 |
tim |
110 |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
79 |
tim |
93 |
Quaternion(const Vector<Real,4>& v) |
80 |
|
|
: Vector<Real, 4>(v){ |
81 |
|
|
} |
82 |
tim |
92 |
|
83 |
tim |
110 |
/** copy assignment */ |
84 |
tim |
93 |
Quaternion& operator =(const Vector<Real, 4>& v){ |
85 |
|
|
if (this == & v) |
86 |
|
|
return *this; |
87 |
|
|
|
88 |
|
|
Vector<Real, 4>::operator=(v); |
89 |
|
|
|
90 |
|
|
return *this; |
91 |
|
|
} |
92 |
|
|
|
93 |
|
|
/** |
94 |
|
|
* Returns the value of the first element of this quaternion. |
95 |
|
|
* @return the value of the first element of this quaternion |
96 |
|
|
*/ |
97 |
|
|
Real w() const { |
98 |
tim |
385 |
return this->data_[0]; |
99 |
tim |
93 |
} |
100 |
|
|
|
101 |
|
|
/** |
102 |
|
|
* Returns the reference of the first element of this quaternion. |
103 |
|
|
* @return the reference of the first element of this quaternion |
104 |
|
|
*/ |
105 |
|
|
Real& w() { |
106 |
tim |
385 |
return this->data_[0]; |
107 |
tim |
93 |
} |
108 |
|
|
|
109 |
|
|
/** |
110 |
|
|
* Returns the value of the first element of this quaternion. |
111 |
|
|
* @return the value of the first element of this quaternion |
112 |
|
|
*/ |
113 |
|
|
Real x() const { |
114 |
tim |
385 |
return this->data_[1]; |
115 |
tim |
93 |
} |
116 |
|
|
|
117 |
|
|
/** |
118 |
|
|
* Returns the reference of the second element of this quaternion. |
119 |
|
|
* @return the reference of the second element of this quaternion |
120 |
|
|
*/ |
121 |
|
|
Real& x() { |
122 |
tim |
385 |
return this->data_[1]; |
123 |
tim |
93 |
} |
124 |
|
|
|
125 |
|
|
/** |
126 |
|
|
* Returns the value of the thirf element of this quaternion. |
127 |
|
|
* @return the value of the third element of this quaternion |
128 |
|
|
*/ |
129 |
|
|
Real y() const { |
130 |
tim |
385 |
return this->data_[2]; |
131 |
tim |
93 |
} |
132 |
|
|
|
133 |
|
|
/** |
134 |
|
|
* Returns the reference of the third element of this quaternion. |
135 |
|
|
* @return the reference of the third element of this quaternion |
136 |
|
|
*/ |
137 |
|
|
Real& y() { |
138 |
tim |
385 |
return this->data_[2]; |
139 |
tim |
93 |
} |
140 |
|
|
|
141 |
|
|
/** |
142 |
|
|
* Returns the value of the fourth element of this quaternion. |
143 |
|
|
* @return the value of the fourth element of this quaternion |
144 |
|
|
*/ |
145 |
|
|
Real z() const { |
146 |
tim |
385 |
return this->data_[3]; |
147 |
tim |
93 |
} |
148 |
|
|
/** |
149 |
|
|
* Returns the reference of the fourth element of this quaternion. |
150 |
|
|
* @return the reference of the fourth element of this quaternion |
151 |
|
|
*/ |
152 |
|
|
Real& z() { |
153 |
tim |
385 |
return this->data_[3]; |
154 |
tim |
93 |
} |
155 |
|
|
|
156 |
|
|
/** |
157 |
tim |
110 |
* Tests if this quaternion is equal to other quaternion |
158 |
|
|
* @return true if equal, otherwise return false |
159 |
|
|
* @param q quaternion to be compared |
160 |
|
|
*/ |
161 |
|
|
inline bool operator ==(const Quaternion<Real>& q) { |
162 |
|
|
|
163 |
|
|
for (unsigned int i = 0; i < 4; i ++) { |
164 |
tim |
385 |
if (!equal(this->data_[i], q[i])) { |
165 |
tim |
110 |
return false; |
166 |
|
|
} |
167 |
|
|
} |
168 |
|
|
|
169 |
|
|
return true; |
170 |
|
|
} |
171 |
|
|
|
172 |
|
|
/** |
173 |
tim |
93 |
* Returns the inverse of this quaternion |
174 |
|
|
* @return inverse |
175 |
|
|
* @note since quaternion is a complex number, the inverse of quaternion |
176 |
|
|
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
177 |
|
|
*/ |
178 |
tim |
110 |
Quaternion<Real> inverse() { |
179 |
tim |
93 |
Quaternion<Real> q; |
180 |
tim |
110 |
Real d = this->lengthSquare(); |
181 |
tim |
93 |
|
182 |
|
|
q.w() = w() / d; |
183 |
|
|
q.x() = -x() / d; |
184 |
|
|
q.y() = -y() / d; |
185 |
|
|
q.z() = -z() / d; |
186 |
|
|
|
187 |
|
|
return q; |
188 |
|
|
} |
189 |
|
|
|
190 |
|
|
/** |
191 |
|
|
* Sets the value to the multiplication of itself and another quaternion |
192 |
|
|
* @param q the other quaternion |
193 |
|
|
*/ |
194 |
|
|
void mul(const Quaternion<Real>& q) { |
195 |
tim |
110 |
Quaternion<Real> tmp(*this); |
196 |
tim |
93 |
|
197 |
tim |
385 |
this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
198 |
|
|
this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
199 |
|
|
this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
200 |
|
|
this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
201 |
tim |
110 |
} |
202 |
tim |
93 |
|
203 |
tim |
110 |
void mul(const Real& s) { |
204 |
tim |
385 |
this->data_[0] *= s; |
205 |
|
|
this->data_[1] *= s; |
206 |
|
|
this->data_[2] *= s; |
207 |
|
|
this->data_[3] *= s; |
208 |
tim |
93 |
} |
209 |
|
|
|
210 |
|
|
/** Set the value of this quaternion to the division of itself by another quaternion */ |
211 |
tim |
110 |
void div(Quaternion<Real>& q) { |
212 |
tim |
93 |
mul(q.inverse()); |
213 |
|
|
} |
214 |
tim |
110 |
|
215 |
|
|
void div(const Real& s) { |
216 |
tim |
385 |
this->data_[0] /= s; |
217 |
|
|
this->data_[1] /= s; |
218 |
|
|
this->data_[2] /= s; |
219 |
|
|
this->data_[3] /= s; |
220 |
tim |
110 |
} |
221 |
tim |
93 |
|
222 |
|
|
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
223 |
|
|
mul(q); |
224 |
|
|
return *this; |
225 |
|
|
} |
226 |
tim |
110 |
|
227 |
|
|
Quaternion<Real>& operator *=(const Real& s) { |
228 |
|
|
mul(s); |
229 |
tim |
93 |
return *this; |
230 |
|
|
} |
231 |
|
|
|
232 |
tim |
110 |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
233 |
|
|
*this *= q.inverse(); |
234 |
|
|
return *this; |
235 |
|
|
} |
236 |
|
|
|
237 |
|
|
Quaternion<Real>& operator /=(const Real& s) { |
238 |
|
|
div(s); |
239 |
|
|
return *this; |
240 |
|
|
} |
241 |
tim |
93 |
/** |
242 |
|
|
* Returns the conjugate quaternion of this quaternion |
243 |
|
|
* @return the conjugate quaternion of this quaternion |
244 |
|
|
*/ |
245 |
|
|
Quaternion<Real> conjugate() { |
246 |
|
|
return Quaternion<Real>(w(), -x(), -y(), -z()); |
247 |
|
|
} |
248 |
|
|
|
249 |
|
|
/** |
250 |
|
|
* Returns the corresponding rotation matrix (3x3) |
251 |
|
|
* @return a 3x3 rotation matrix |
252 |
|
|
*/ |
253 |
tim |
99 |
SquareMatrix<Real, 3> toRotationMatrix3() { |
254 |
|
|
SquareMatrix<Real, 3> rotMat3; |
255 |
tim |
93 |
|
256 |
|
|
Real w2; |
257 |
|
|
Real x2; |
258 |
|
|
Real y2; |
259 |
|
|
Real z2; |
260 |
|
|
|
261 |
tim |
385 |
if (!this->isNormalized()) |
262 |
|
|
this->normalize(); |
263 |
tim |
93 |
|
264 |
|
|
w2 = w() * w(); |
265 |
|
|
x2 = x() * x(); |
266 |
|
|
y2 = y() * y(); |
267 |
|
|
z2 = z() * z(); |
268 |
|
|
|
269 |
|
|
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
270 |
|
|
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
271 |
|
|
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
272 |
|
|
|
273 |
|
|
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
274 |
|
|
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
275 |
|
|
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
276 |
|
|
|
277 |
|
|
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
278 |
|
|
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
279 |
|
|
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
280 |
tim |
110 |
|
281 |
|
|
return rotMat3; |
282 |
tim |
93 |
} |
283 |
|
|
|
284 |
|
|
};//end Quaternion |
285 |
|
|
|
286 |
tim |
110 |
|
287 |
tim |
93 |
/** |
288 |
tim |
110 |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
289 |
|
|
* @return the vaule of scalar multiplication of this vector |
290 |
|
|
* @param q the source quaternion |
291 |
|
|
* @param s the scalar value |
292 |
|
|
*/ |
293 |
|
|
template<typename Real, unsigned int Dim> |
294 |
|
|
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
295 |
|
|
Quaternion<Real> result(q); |
296 |
|
|
result.mul(s); |
297 |
|
|
return result; |
298 |
|
|
} |
299 |
|
|
|
300 |
|
|
/** |
301 |
|
|
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
302 |
|
|
* @return the vaule of scalar multiplication of this vector |
303 |
|
|
* @param s the scalar value |
304 |
|
|
* @param q the source quaternion |
305 |
|
|
*/ |
306 |
|
|
template<typename Real, unsigned int Dim> |
307 |
|
|
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
308 |
|
|
Quaternion<Real> result(q); |
309 |
|
|
result.mul(s); |
310 |
|
|
return result; |
311 |
|
|
} |
312 |
|
|
|
313 |
|
|
/** |
314 |
tim |
93 |
* Returns the multiplication of two quaternion |
315 |
|
|
* @return the multiplication of two quaternion |
316 |
|
|
* @param q1 the first quaternion |
317 |
|
|
* @param q2 the second quaternion |
318 |
|
|
*/ |
319 |
|
|
template<typename Real> |
320 |
|
|
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
321 |
|
|
Quaternion<Real> result(q1); |
322 |
|
|
result *= q2; |
323 |
|
|
return result; |
324 |
|
|
} |
325 |
|
|
|
326 |
|
|
/** |
327 |
|
|
* Returns the division of two quaternion |
328 |
|
|
* @param q1 divisor |
329 |
|
|
* @param q2 dividen |
330 |
|
|
*/ |
331 |
|
|
|
332 |
|
|
template<typename Real> |
333 |
tim |
110 |
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
334 |
tim |
93 |
return q1 * q2.inverse(); |
335 |
|
|
} |
336 |
|
|
|
337 |
|
|
/** |
338 |
|
|
* Returns the value of the division of a scalar by a quaternion |
339 |
|
|
* @return the value of the division of a scalar by a quaternion |
340 |
|
|
* @param s scalar |
341 |
|
|
* @param q quaternion |
342 |
|
|
* @note for a quaternion q, 1/q = q.inverse() |
343 |
|
|
*/ |
344 |
|
|
template<typename Real> |
345 |
tim |
110 |
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
346 |
tim |
93 |
|
347 |
tim |
110 |
Quaternion<Real> x; |
348 |
|
|
x = q.inverse(); |
349 |
|
|
x *= s; |
350 |
|
|
return x; |
351 |
tim |
93 |
} |
352 |
tim |
110 |
|
353 |
|
|
template <class T> |
354 |
|
|
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
355 |
|
|
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
356 |
|
|
} |
357 |
|
|
|
358 |
tim |
93 |
typedef Quaternion<double> Quat4d; |
359 |
tim |
92 |
} |
360 |
|
|
#endif //MATH_QUATERNION_HPP |