ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Quaternion.hpp
Revision: 1686
Committed: Sat Mar 10 04:21:44 2012 UTC (13 years, 1 month ago) by gezelter
File size: 20563 byte(s)
Log Message:
Fixes for compilation under LLVM compiler
Bug-fix for switching function in Gay-Berne

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 92 *
4 gezelter 246 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 tim 92 */
42 gezelter 246
43 tim 92 /**
44     * @file Quaternion.hpp
45     * @author Teng Lin
46     * @date 10/11/2004
47     * @version 1.0
48     */
49    
50     #ifndef MATH_QUATERNION_HPP
51     #define MATH_QUATERNION_HPP
52    
53 cli2 1360 #include "math/Vector3.hpp"
54 tim 110 #include "math/SquareMatrix.hpp"
55 cli2 1360 #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
56     const RealType tiny=1.0e-6;
57 tim 93
58 gezelter 1390 namespace OpenMD{
59 tim 92
60 gezelter 507 /**
61     * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
62     * Quaternion is a sort of a higher-level complex number.
63     * It is defined as Q = w + x*i + y*j + z*k,
64 tim 963 * where w, x, y, and z are numbers of type T (e.g. RealType), and
65 gezelter 507 * i*i = -1; j*j = -1; k*k = -1;
66     * i*j = k; j*k = i; k*i = j;
67     */
68     template<typename Real>
69     class Quaternion : public Vector<Real, 4> {
70 cli2 1360
71 gezelter 507 public:
72     Quaternion() : Vector<Real, 4>() {}
73 tim 92
74 gezelter 507 /** Constructs and initializes a Quaternion from w, x, y, z values */
75     Quaternion(Real w, Real x, Real y, Real z) {
76     this->data_[0] = w;
77     this->data_[1] = x;
78     this->data_[2] = y;
79     this->data_[3] = z;
80     }
81 tim 93
82 gezelter 507 /** Constructs and initializes a Quaternion from a Vector<Real,4> */
83     Quaternion(const Vector<Real,4>& v)
84     : Vector<Real, 4>(v){
85 cli2 1360 }
86 tim 92
87 gezelter 507 /** copy assignment */
88     Quaternion& operator =(const Vector<Real, 4>& v){
89     if (this == & v)
90     return *this;
91 cli2 1360
92 gezelter 507 Vector<Real, 4>::operator=(v);
93 cli2 1360
94 gezelter 507 return *this;
95     }
96 cli2 1360
97 gezelter 507 /**
98     * Returns the value of the first element of this quaternion.
99     * @return the value of the first element of this quaternion
100     */
101     Real w() const {
102     return this->data_[0];
103     }
104 tim 93
105 gezelter 507 /**
106     * Returns the reference of the first element of this quaternion.
107     * @return the reference of the first element of this quaternion
108     */
109     Real& w() {
110     return this->data_[0];
111     }
112 tim 93
113 gezelter 507 /**
114     * Returns the value of the first element of this quaternion.
115     * @return the value of the first element of this quaternion
116     */
117     Real x() const {
118     return this->data_[1];
119     }
120 tim 93
121 gezelter 507 /**
122     * Returns the reference of the second element of this quaternion.
123     * @return the reference of the second element of this quaternion
124     */
125     Real& x() {
126     return this->data_[1];
127     }
128 tim 93
129 gezelter 507 /**
130     * Returns the value of the thirf element of this quaternion.
131     * @return the value of the third element of this quaternion
132     */
133     Real y() const {
134     return this->data_[2];
135     }
136 tim 93
137 gezelter 507 /**
138     * Returns the reference of the third element of this quaternion.
139     * @return the reference of the third element of this quaternion
140     */
141     Real& y() {
142     return this->data_[2];
143     }
144 tim 93
145 gezelter 507 /**
146     * Returns the value of the fourth element of this quaternion.
147     * @return the value of the fourth element of this quaternion
148     */
149     Real z() const {
150     return this->data_[3];
151     }
152     /**
153     * Returns the reference of the fourth element of this quaternion.
154     * @return the reference of the fourth element of this quaternion
155     */
156     Real& z() {
157     return this->data_[3];
158     }
159 tim 93
160 gezelter 507 /**
161     * Tests if this quaternion is equal to other quaternion
162     * @return true if equal, otherwise return false
163     * @param q quaternion to be compared
164     */
165     inline bool operator ==(const Quaternion<Real>& q) {
166 tim 110
167 gezelter 507 for (unsigned int i = 0; i < 4; i ++) {
168     if (!equal(this->data_[i], q[i])) {
169     return false;
170     }
171     }
172 tim 110
173 gezelter 507 return true;
174     }
175 tim 110
176 gezelter 507 /**
177     * Returns the inverse of this quaternion
178     * @return inverse
179     * @note since quaternion is a complex number, the inverse of quaternion
180     * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
181     */
182     Quaternion<Real> inverse() {
183     Quaternion<Real> q;
184     Real d = this->lengthSquare();
185 tim 93
186 gezelter 507 q.w() = w() / d;
187     q.x() = -x() / d;
188     q.y() = -y() / d;
189     q.z() = -z() / d;
190 tim 93
191 gezelter 507 return q;
192     }
193 tim 93
194 gezelter 507 /**
195     * Sets the value to the multiplication of itself and another quaternion
196     * @param q the other quaternion
197     */
198     void mul(const Quaternion<Real>& q) {
199     Quaternion<Real> tmp(*this);
200 tim 93
201 gezelter 507 this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
202     this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
203     this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
204     this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);
205     }
206 tim 93
207 gezelter 507 void mul(const Real& s) {
208     this->data_[0] *= s;
209     this->data_[1] *= s;
210     this->data_[2] *= s;
211     this->data_[3] *= s;
212     }
213 tim 93
214 gezelter 507 /** Set the value of this quaternion to the division of itself by another quaternion */
215     void div(Quaternion<Real>& q) {
216     mul(q.inverse());
217     }
218 tim 110
219 gezelter 507 void div(const Real& s) {
220     this->data_[0] /= s;
221     this->data_[1] /= s;
222     this->data_[2] /= s;
223     this->data_[3] /= s;
224     }
225 tim 93
226 gezelter 507 Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
227     mul(q);
228     return *this;
229     }
230 tim 110
231 gezelter 507 Quaternion<Real>& operator *=(const Real& s) {
232     mul(s);
233     return *this;
234     }
235 tim 93
236 gezelter 507 Quaternion<Real>& operator /=(Quaternion<Real>& q) {
237     *this *= q.inverse();
238     return *this;
239     }
240 tim 110
241 gezelter 507 Quaternion<Real>& operator /=(const Real& s) {
242     div(s);
243     return *this;
244     }
245     /**
246     * Returns the conjugate quaternion of this quaternion
247     * @return the conjugate quaternion of this quaternion
248     */
249 cli2 1360 Quaternion<Real> conjugate() const {
250 gezelter 507 return Quaternion<Real>(w(), -x(), -y(), -z());
251     }
252 tim 93
253 cli2 1360
254 gezelter 507 /**
255 cli2 1360 return rotation angle from -PI to PI
256     */
257     inline Real get_rotation_angle() const{
258 gezelter 1686 if( w() < (Real)0.0 )
259 cli2 1360 return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
260     else
261     return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() );
262     }
263    
264     /**
265     create a unit quaternion from axis angle representation
266     */
267     Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
268     const Real& angle){
269     Vector3<Real> v(axis);
270     v.normalize();
271     Real half_angle = angle*0.5;
272     Real sin_a = sin(half_angle);
273     *this = Quaternion<Real>(cos(half_angle),
274     v.x()*sin_a,
275     v.y()*sin_a,
276     v.z()*sin_a);
277 gezelter 1390 return *this;
278 cli2 1360 }
279    
280     /**
281     convert a quaternion to axis angle representation,
282     preserve the axis direction and angle from -PI to +PI
283     */
284     void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
285     Real vl = sqrt( x()*x() + y()*y() + z()*z() );
286     if( vl > tiny ) {
287     Real ivl = 1.0/vl;
288     axis.x() = x() * ivl;
289     axis.y() = y() * ivl;
290     axis.z() = z() * ivl;
291    
292     if( w() < 0 )
293     angle = 2.0*atan2(-vl, -w()); //-PI,0
294     else
295     angle = 2.0*atan2( vl, w()); //0,PI
296     } else {
297     axis = Vector3<Real>(0.0,0.0,0.0);
298     angle = 0.0;
299     }
300     }
301    
302     /**
303     shortest arc quaternion rotate one vector to another by shortest path.
304     create rotation from -> to, for any length vectors.
305     */
306     Quaternion<Real> fromShortestArc(const Vector3d& from,
307     const Vector3d& to ) {
308    
309     Vector3d c( cross(from,to) );
310     *this = Quaternion<Real>(dot(from,to),
311     c.x(),
312     c.y(),
313     c.z());
314    
315     this->normalize(); // if "from" or "to" not unit, normalize quat
316 gezelter 1686 w() += 1.0f; // reducing angle to halfangle
317     if( w() <= 1e-6 ) { // angle close to PI
318 cli2 1360 if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
319 gezelter 1686 this->data_[0] = w();
320 cli2 1360 this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0))
321     this->data_[2] = from.z();
322     this->data_[3] = -from.y();
323     } else {
324 gezelter 1686 this->data_[0] = w();
325 cli2 1360 this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1))
326     this->data_[2] = -from.x();
327     this->data_[3] = 0.0;
328     }
329     }
330     this->normalize();
331     }
332    
333     Real ComputeTwist(const Quaternion& q) {
334     return (Real)2.0 * atan2(q.z(), q.w());
335     }
336    
337     void RemoveTwist(Quaternion& q) {
338     Real t = ComputeTwist(q);
339     Quaternion rt = fromAxisAngle(V3Z, t);
340    
341     q *= rt.inverse();
342     }
343    
344     void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
345     Vector3<Real>& swingAxis) {
346    
347     twistAngle = (Real)2.0 * atan2(z(), w());
348     Quaternion rt, rs;
349     rt.fromAxisAngle(V3Z, twistAngle);
350     rs = *this * rt.inverse();
351    
352     Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
353     if( vl > tiny ) {
354     Real ivl = 1.0 / vl;
355     swingAxis.x() = rs.x() * ivl;
356     swingAxis.y() = rs.y() * ivl;
357     swingAxis.z() = rs.z() * ivl;
358    
359     if( rs.w() < 0.0 )
360     swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
361     else
362     swingAngle = 2.0*atan2( vl, rs.w()); //0,PI
363     } else {
364     swingAxis = Vector3<Real>(1.0,0.0,0.0);
365     swingAngle = 0.0;
366     }
367     }
368    
369    
370     Vector3<Real> rotate(const Vector3<Real>& v) {
371    
372     Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
373     v.y() * w() + v.x() * z() - v.z() * x(),
374     v.z() * w() + v.y() * x() - v.x() * y(),
375     v.x() * x() + v.y() * y() + v.z() * z());
376    
377     return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
378     w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
379     w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
380     ( 1.0/this->lengthSquare() );
381     }
382    
383     Quaternion<Real>& align (const Vector3<Real>& V1,
384     const Vector3<Real>& V2) {
385    
386     // If V1 and V2 are not parallel, the axis of rotation is the unit-length
387     // vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation,
388     // A, is the angle between V1 and V2. The quaternion for the rotation is
389     // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
390     //
391     // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
392     // compute sin(A/2) and cos(A/2), we reduce the computational costs
393     // by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
394     // Dot(V1,B).
395     //
396     // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
397     // Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
398     // which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
399     // C = Cross(V1,B).
400     //
401     // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2,
402     // then B = 0. This can happen even if V1 is approximately -V2 using
403     // floating point arithmetic, since Vector3::Normalize checks for
404     // closeness to zero and returns the zero vector accordingly. The test
405     // for exactly zero is usually not recommend for floating point
406     // arithmetic, but the implementation of Vector3::Normalize guarantees
407     // the comparison is robust. In this case, the A = pi and any axis
408     // perpendicular to V1 may be used as the rotation axis.
409    
410     Vector3<Real> Bisector = V1 + V2;
411     Bisector.normalize();
412    
413     Real CosHalfAngle = dot(V1,Bisector);
414    
415     this->data_[0] = CosHalfAngle;
416    
417     if (CosHalfAngle != (Real)0.0) {
418     Vector3<Real> Cross = cross(V1, Bisector);
419     this->data_[1] = Cross.x();
420     this->data_[2] = Cross.y();
421     this->data_[3] = Cross.z();
422     } else {
423     Real InvLength;
424     if (fabs(V1[0]) >= fabs(V1[1])) {
425     // V1.x or V1.z is the largest magnitude component
426     InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
427    
428     this->data_[1] = -V1[2]*InvLength;
429     this->data_[2] = (Real)0.0;
430     this->data_[3] = +V1[0]*InvLength;
431     } else {
432     // V1.y or V1.z is the largest magnitude component
433     InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
434    
435     this->data_[1] = (Real)0.0;
436     this->data_[2] = +V1[2]*InvLength;
437     this->data_[3] = -V1[1]*InvLength;
438     }
439     }
440     return *this;
441     }
442    
443     void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
444    
445     // First test if the swing is in the singularity:
446    
447     if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
448    
449     // Decompose into twist-swing by solving the equation:
450     //
451     // Qtwist(t*2) * Qswing(s*2) = q
452     //
453     // note: (x,y) is the normalized swing axis (x*x+y*y=1)
454     //
455     // ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
456     // ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1)
457     // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
458     //
459     // The swing rotation/2 s comes from:
460     //
461     // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>
462     // Cs = sqrt ( qw^2 + qz^2 ) (3)
463     //
464     // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
465     // Ss = sqrt ( qx^2 + qy^2 ) (4)
466     // From (1): |SsCt -StSs| |x| = |qx|
467     // |StSs +SsCt| |y| |qy| (5)
468    
469     Real qw, qx, qy, qz;
470    
471     if ( w()<0 ) {
472     qw=-w();
473     qx=-x();
474     qy=-y();
475     qz=-z();
476     } else {
477     qw=w();
478     qx=x();
479     qy=y();
480     qz=z();
481     }
482    
483     Real t = atan2 ( qz, qw ); // from (2)
484     Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
485     // and (4)
486    
487     Real x=0.0, y=0.0, sins=sin(s);
488    
489     if ( !ISZERO(sins,tiny) ) {
490     Real sint = sin(t);
491     Real cost = cos(t);
492    
493     // by solving the linear system in (5):
494     y = (-qx*sint + qy*cost)/sins;
495     x = ( qx*cost + qy*sint)/sins;
496     }
497    
498     tw = (Real)2.0*t;
499     sx = (Real)2.0*x*s;
500     sy = (Real)2.0*y*s;
501     }
502    
503     void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
504    
505     // Decompose q into swing-twist using a similar development as
506     // in function toTwistSwing
507    
508     if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
509    
510     Real qw, qx, qy, qz;
511     if ( w() < 0 ){
512     qw=-w();
513     qx=-x();
514     qy=-y();
515     qz=-z();
516     } else {
517     qw=w();
518     qx=x();
519     qy=y();
520     qz=z();
521     }
522    
523     // Get the twist t:
524     Real t = 2.0 * atan2(qz,qw);
525    
526     Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
527     Real gam = t/2.0;
528     Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
529     Real singam = sin(gam);
530     Real cosgam = cos(gam);
531    
532     sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
533     sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
534     tw = Real( t );
535     }
536    
537    
538    
539     /**
540 gezelter 507 * Returns the corresponding rotation matrix (3x3)
541     * @return a 3x3 rotation matrix
542     */
543     SquareMatrix<Real, 3> toRotationMatrix3() {
544     SquareMatrix<Real, 3> rotMat3;
545 cli2 1360
546 gezelter 507 Real w2;
547     Real x2;
548     Real y2;
549     Real z2;
550 tim 93
551 gezelter 507 if (!this->isNormalized())
552     this->normalize();
553 tim 93
554 gezelter 507 w2 = w() * w();
555     x2 = x() * x();
556     y2 = y() * y();
557     z2 = z() * z();
558 tim 93
559 gezelter 507 rotMat3(0, 0) = w2 + x2 - y2 - z2;
560     rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
561     rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
562 tim 93
563 gezelter 507 rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
564     rotMat3(1, 1) = w2 - x2 + y2 - z2;
565     rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
566 tim 93
567 gezelter 507 rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
568     rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
569     rotMat3(2, 2) = w2 - x2 -y2 +z2;
570 tim 110
571 gezelter 507 return rotMat3;
572     }
573 tim 93
574 gezelter 507 };//end Quaternion
575 tim 93
576 tim 110
577 tim 93 /**
578 tim 110 * Returns the vaule of scalar multiplication of this quaterion q (q * s).
579     * @return the vaule of scalar multiplication of this vector
580     * @param q the source quaternion
581     * @param s the scalar value
582     */
583 gezelter 507 template<typename Real, unsigned int Dim>
584     Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {
585     Quaternion<Real> result(q);
586     result.mul(s);
587     return result;
588     }
589 tim 110
590 gezelter 507 /**
591     * Returns the vaule of scalar multiplication of this quaterion q (q * s).
592     * @return the vaule of scalar multiplication of this vector
593     * @param s the scalar value
594     * @param q the source quaternion
595     */
596     template<typename Real, unsigned int Dim>
597     Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
598     Quaternion<Real> result(q);
599     result.mul(s);
600     return result;
601     }
602 tim 110
603 gezelter 507 /**
604     * Returns the multiplication of two quaternion
605     * @return the multiplication of two quaternion
606     * @param q1 the first quaternion
607     * @param q2 the second quaternion
608     */
609     template<typename Real>
610     inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
611     Quaternion<Real> result(q1);
612     result *= q2;
613     return result;
614     }
615 tim 93
616 gezelter 507 /**
617     * Returns the division of two quaternion
618     * @param q1 divisor
619     * @param q2 dividen
620     */
621 tim 93
622 gezelter 507 template<typename Real>
623     inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) {
624     return q1 * q2.inverse();
625     }
626 tim 93
627 gezelter 507 /**
628     * Returns the value of the division of a scalar by a quaternion
629     * @return the value of the division of a scalar by a quaternion
630     * @param s scalar
631     * @param q quaternion
632     * @note for a quaternion q, 1/q = q.inverse()
633     */
634     template<typename Real>
635     Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) {
636 tim 93
637 gezelter 507 Quaternion<Real> x;
638     x = q.inverse();
639     x *= s;
640     return x;
641     }
642 tim 110
643 gezelter 507 template <class T>
644     inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
645     return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
646     }
647 tim 110
648 tim 963 typedef Quaternion<RealType> Quat4d;
649 tim 92 }
650     #endif //MATH_QUATERNION_HPP

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date