1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
tim |
92 |
* |
4 |
gezelter |
246 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
tim |
92 |
*/ |
41 |
gezelter |
246 |
|
42 |
tim |
92 |
/** |
43 |
|
|
* @file Quaternion.hpp |
44 |
|
|
* @author Teng Lin |
45 |
|
|
* @date 10/11/2004 |
46 |
|
|
* @version 1.0 |
47 |
|
|
*/ |
48 |
|
|
|
49 |
|
|
#ifndef MATH_QUATERNION_HPP |
50 |
|
|
#define MATH_QUATERNION_HPP |
51 |
|
|
|
52 |
cli2 |
1360 |
#include "math/Vector3.hpp" |
53 |
tim |
110 |
#include "math/SquareMatrix.hpp" |
54 |
cli2 |
1360 |
#define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) ) |
55 |
|
|
const RealType tiny=1.0e-6; |
56 |
tim |
93 |
|
57 |
gezelter |
1390 |
namespace OpenMD{ |
58 |
tim |
92 |
|
59 |
gezelter |
507 |
/** |
60 |
|
|
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
61 |
|
|
* Quaternion is a sort of a higher-level complex number. |
62 |
|
|
* It is defined as Q = w + x*i + y*j + z*k, |
63 |
tim |
963 |
* where w, x, y, and z are numbers of type T (e.g. RealType), and |
64 |
gezelter |
507 |
* i*i = -1; j*j = -1; k*k = -1; |
65 |
|
|
* i*j = k; j*k = i; k*i = j; |
66 |
|
|
*/ |
67 |
|
|
template<typename Real> |
68 |
|
|
class Quaternion : public Vector<Real, 4> { |
69 |
cli2 |
1360 |
|
70 |
gezelter |
507 |
public: |
71 |
|
|
Quaternion() : Vector<Real, 4>() {} |
72 |
tim |
92 |
|
73 |
gezelter |
507 |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
74 |
|
|
Quaternion(Real w, Real x, Real y, Real z) { |
75 |
|
|
this->data_[0] = w; |
76 |
|
|
this->data_[1] = x; |
77 |
|
|
this->data_[2] = y; |
78 |
|
|
this->data_[3] = z; |
79 |
|
|
} |
80 |
tim |
93 |
|
81 |
gezelter |
507 |
/** Constructs and initializes a Quaternion from a Vector<Real,4> */ |
82 |
|
|
Quaternion(const Vector<Real,4>& v) |
83 |
|
|
: Vector<Real, 4>(v){ |
84 |
cli2 |
1360 |
} |
85 |
tim |
92 |
|
86 |
gezelter |
507 |
/** copy assignment */ |
87 |
|
|
Quaternion& operator =(const Vector<Real, 4>& v){ |
88 |
|
|
if (this == & v) |
89 |
|
|
return *this; |
90 |
cli2 |
1360 |
|
91 |
gezelter |
507 |
Vector<Real, 4>::operator=(v); |
92 |
cli2 |
1360 |
|
93 |
gezelter |
507 |
return *this; |
94 |
|
|
} |
95 |
cli2 |
1360 |
|
96 |
gezelter |
507 |
/** |
97 |
|
|
* Returns the value of the first element of this quaternion. |
98 |
|
|
* @return the value of the first element of this quaternion |
99 |
|
|
*/ |
100 |
|
|
Real w() const { |
101 |
|
|
return this->data_[0]; |
102 |
|
|
} |
103 |
tim |
93 |
|
104 |
gezelter |
507 |
/** |
105 |
|
|
* Returns the reference of the first element of this quaternion. |
106 |
|
|
* @return the reference of the first element of this quaternion |
107 |
|
|
*/ |
108 |
|
|
Real& w() { |
109 |
|
|
return this->data_[0]; |
110 |
|
|
} |
111 |
tim |
93 |
|
112 |
gezelter |
507 |
/** |
113 |
|
|
* Returns the value of the first element of this quaternion. |
114 |
|
|
* @return the value of the first element of this quaternion |
115 |
|
|
*/ |
116 |
|
|
Real x() const { |
117 |
|
|
return this->data_[1]; |
118 |
|
|
} |
119 |
tim |
93 |
|
120 |
gezelter |
507 |
/** |
121 |
|
|
* Returns the reference of the second element of this quaternion. |
122 |
|
|
* @return the reference of the second element of this quaternion |
123 |
|
|
*/ |
124 |
|
|
Real& x() { |
125 |
|
|
return this->data_[1]; |
126 |
|
|
} |
127 |
tim |
93 |
|
128 |
gezelter |
507 |
/** |
129 |
|
|
* Returns the value of the thirf element of this quaternion. |
130 |
|
|
* @return the value of the third element of this quaternion |
131 |
|
|
*/ |
132 |
|
|
Real y() const { |
133 |
|
|
return this->data_[2]; |
134 |
|
|
} |
135 |
tim |
93 |
|
136 |
gezelter |
507 |
/** |
137 |
|
|
* Returns the reference of the third element of this quaternion. |
138 |
|
|
* @return the reference of the third element of this quaternion |
139 |
|
|
*/ |
140 |
|
|
Real& y() { |
141 |
|
|
return this->data_[2]; |
142 |
|
|
} |
143 |
tim |
93 |
|
144 |
gezelter |
507 |
/** |
145 |
|
|
* Returns the value of the fourth element of this quaternion. |
146 |
|
|
* @return the value of the fourth element of this quaternion |
147 |
|
|
*/ |
148 |
|
|
Real z() const { |
149 |
|
|
return this->data_[3]; |
150 |
|
|
} |
151 |
|
|
/** |
152 |
|
|
* Returns the reference of the fourth element of this quaternion. |
153 |
|
|
* @return the reference of the fourth element of this quaternion |
154 |
|
|
*/ |
155 |
|
|
Real& z() { |
156 |
|
|
return this->data_[3]; |
157 |
|
|
} |
158 |
tim |
93 |
|
159 |
gezelter |
507 |
/** |
160 |
|
|
* Tests if this quaternion is equal to other quaternion |
161 |
|
|
* @return true if equal, otherwise return false |
162 |
|
|
* @param q quaternion to be compared |
163 |
|
|
*/ |
164 |
|
|
inline bool operator ==(const Quaternion<Real>& q) { |
165 |
tim |
110 |
|
166 |
gezelter |
507 |
for (unsigned int i = 0; i < 4; i ++) { |
167 |
|
|
if (!equal(this->data_[i], q[i])) { |
168 |
|
|
return false; |
169 |
|
|
} |
170 |
|
|
} |
171 |
tim |
110 |
|
172 |
gezelter |
507 |
return true; |
173 |
|
|
} |
174 |
tim |
110 |
|
175 |
gezelter |
507 |
/** |
176 |
|
|
* Returns the inverse of this quaternion |
177 |
|
|
* @return inverse |
178 |
|
|
* @note since quaternion is a complex number, the inverse of quaternion |
179 |
|
|
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
180 |
|
|
*/ |
181 |
|
|
Quaternion<Real> inverse() { |
182 |
|
|
Quaternion<Real> q; |
183 |
|
|
Real d = this->lengthSquare(); |
184 |
tim |
93 |
|
185 |
gezelter |
507 |
q.w() = w() / d; |
186 |
|
|
q.x() = -x() / d; |
187 |
|
|
q.y() = -y() / d; |
188 |
|
|
q.z() = -z() / d; |
189 |
tim |
93 |
|
190 |
gezelter |
507 |
return q; |
191 |
|
|
} |
192 |
tim |
93 |
|
193 |
gezelter |
507 |
/** |
194 |
|
|
* Sets the value to the multiplication of itself and another quaternion |
195 |
|
|
* @param q the other quaternion |
196 |
|
|
*/ |
197 |
|
|
void mul(const Quaternion<Real>& q) { |
198 |
|
|
Quaternion<Real> tmp(*this); |
199 |
tim |
93 |
|
200 |
gezelter |
507 |
this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]); |
201 |
|
|
this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]); |
202 |
|
|
this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]); |
203 |
|
|
this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]); |
204 |
|
|
} |
205 |
tim |
93 |
|
206 |
gezelter |
507 |
void mul(const Real& s) { |
207 |
|
|
this->data_[0] *= s; |
208 |
|
|
this->data_[1] *= s; |
209 |
|
|
this->data_[2] *= s; |
210 |
|
|
this->data_[3] *= s; |
211 |
|
|
} |
212 |
tim |
93 |
|
213 |
gezelter |
507 |
/** Set the value of this quaternion to the division of itself by another quaternion */ |
214 |
|
|
void div(Quaternion<Real>& q) { |
215 |
|
|
mul(q.inverse()); |
216 |
|
|
} |
217 |
tim |
110 |
|
218 |
gezelter |
507 |
void div(const Real& s) { |
219 |
|
|
this->data_[0] /= s; |
220 |
|
|
this->data_[1] /= s; |
221 |
|
|
this->data_[2] /= s; |
222 |
|
|
this->data_[3] /= s; |
223 |
|
|
} |
224 |
tim |
93 |
|
225 |
gezelter |
507 |
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
226 |
|
|
mul(q); |
227 |
|
|
return *this; |
228 |
|
|
} |
229 |
tim |
110 |
|
230 |
gezelter |
507 |
Quaternion<Real>& operator *=(const Real& s) { |
231 |
|
|
mul(s); |
232 |
|
|
return *this; |
233 |
|
|
} |
234 |
tim |
93 |
|
235 |
gezelter |
507 |
Quaternion<Real>& operator /=(Quaternion<Real>& q) { |
236 |
|
|
*this *= q.inverse(); |
237 |
|
|
return *this; |
238 |
|
|
} |
239 |
tim |
110 |
|
240 |
gezelter |
507 |
Quaternion<Real>& operator /=(const Real& s) { |
241 |
|
|
div(s); |
242 |
|
|
return *this; |
243 |
|
|
} |
244 |
|
|
/** |
245 |
|
|
* Returns the conjugate quaternion of this quaternion |
246 |
|
|
* @return the conjugate quaternion of this quaternion |
247 |
|
|
*/ |
248 |
cli2 |
1360 |
Quaternion<Real> conjugate() const { |
249 |
gezelter |
507 |
return Quaternion<Real>(w(), -x(), -y(), -z()); |
250 |
|
|
} |
251 |
tim |
93 |
|
252 |
cli2 |
1360 |
|
253 |
gezelter |
507 |
/** |
254 |
cli2 |
1360 |
return rotation angle from -PI to PI |
255 |
|
|
*/ |
256 |
|
|
inline Real get_rotation_angle() const{ |
257 |
|
|
if( w < (Real)0.0 ) |
258 |
|
|
return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() ); |
259 |
|
|
else |
260 |
|
|
return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() ); |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
/** |
264 |
|
|
create a unit quaternion from axis angle representation |
265 |
|
|
*/ |
266 |
|
|
Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis, |
267 |
|
|
const Real& angle){ |
268 |
|
|
Vector3<Real> v(axis); |
269 |
|
|
v.normalize(); |
270 |
|
|
Real half_angle = angle*0.5; |
271 |
|
|
Real sin_a = sin(half_angle); |
272 |
|
|
*this = Quaternion<Real>(cos(half_angle), |
273 |
|
|
v.x()*sin_a, |
274 |
|
|
v.y()*sin_a, |
275 |
|
|
v.z()*sin_a); |
276 |
gezelter |
1390 |
return *this; |
277 |
cli2 |
1360 |
} |
278 |
|
|
|
279 |
|
|
/** |
280 |
|
|
convert a quaternion to axis angle representation, |
281 |
|
|
preserve the axis direction and angle from -PI to +PI |
282 |
|
|
*/ |
283 |
|
|
void toAxisAngle(Vector3<Real>& axis, Real& angle)const { |
284 |
|
|
Real vl = sqrt( x()*x() + y()*y() + z()*z() ); |
285 |
|
|
if( vl > tiny ) { |
286 |
|
|
Real ivl = 1.0/vl; |
287 |
|
|
axis.x() = x() * ivl; |
288 |
|
|
axis.y() = y() * ivl; |
289 |
|
|
axis.z() = z() * ivl; |
290 |
|
|
|
291 |
|
|
if( w() < 0 ) |
292 |
|
|
angle = 2.0*atan2(-vl, -w()); //-PI,0 |
293 |
|
|
else |
294 |
|
|
angle = 2.0*atan2( vl, w()); //0,PI |
295 |
|
|
} else { |
296 |
|
|
axis = Vector3<Real>(0.0,0.0,0.0); |
297 |
|
|
angle = 0.0; |
298 |
|
|
} |
299 |
|
|
} |
300 |
|
|
|
301 |
|
|
/** |
302 |
|
|
shortest arc quaternion rotate one vector to another by shortest path. |
303 |
|
|
create rotation from -> to, for any length vectors. |
304 |
|
|
*/ |
305 |
|
|
Quaternion<Real> fromShortestArc(const Vector3d& from, |
306 |
|
|
const Vector3d& to ) { |
307 |
|
|
|
308 |
|
|
Vector3d c( cross(from,to) ); |
309 |
|
|
*this = Quaternion<Real>(dot(from,to), |
310 |
|
|
c.x(), |
311 |
|
|
c.y(), |
312 |
|
|
c.z()); |
313 |
|
|
|
314 |
|
|
this->normalize(); // if "from" or "to" not unit, normalize quat |
315 |
|
|
w += 1.0f; // reducing angle to halfangle |
316 |
|
|
if( w <= 1e-6 ) { // angle close to PI |
317 |
|
|
if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) { |
318 |
|
|
this->data_[0] = w; |
319 |
|
|
this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0)) |
320 |
|
|
this->data_[2] = from.z(); |
321 |
|
|
this->data_[3] = -from.y(); |
322 |
|
|
} else { |
323 |
|
|
this->data_[0] = w; |
324 |
|
|
this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1)) |
325 |
|
|
this->data_[2] = -from.x(); |
326 |
|
|
this->data_[3] = 0.0; |
327 |
|
|
} |
328 |
|
|
} |
329 |
|
|
this->normalize(); |
330 |
|
|
} |
331 |
|
|
|
332 |
|
|
Real ComputeTwist(const Quaternion& q) { |
333 |
|
|
return (Real)2.0 * atan2(q.z(), q.w()); |
334 |
|
|
} |
335 |
|
|
|
336 |
|
|
void RemoveTwist(Quaternion& q) { |
337 |
|
|
Real t = ComputeTwist(q); |
338 |
|
|
Quaternion rt = fromAxisAngle(V3Z, t); |
339 |
|
|
|
340 |
|
|
q *= rt.inverse(); |
341 |
|
|
} |
342 |
|
|
|
343 |
|
|
void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle, |
344 |
|
|
Vector3<Real>& swingAxis) { |
345 |
|
|
|
346 |
|
|
twistAngle = (Real)2.0 * atan2(z(), w()); |
347 |
|
|
Quaternion rt, rs; |
348 |
|
|
rt.fromAxisAngle(V3Z, twistAngle); |
349 |
|
|
rs = *this * rt.inverse(); |
350 |
|
|
|
351 |
|
|
Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() ); |
352 |
|
|
if( vl > tiny ) { |
353 |
|
|
Real ivl = 1.0 / vl; |
354 |
|
|
swingAxis.x() = rs.x() * ivl; |
355 |
|
|
swingAxis.y() = rs.y() * ivl; |
356 |
|
|
swingAxis.z() = rs.z() * ivl; |
357 |
|
|
|
358 |
|
|
if( rs.w() < 0.0 ) |
359 |
|
|
swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0 |
360 |
|
|
else |
361 |
|
|
swingAngle = 2.0*atan2( vl, rs.w()); //0,PI |
362 |
|
|
} else { |
363 |
|
|
swingAxis = Vector3<Real>(1.0,0.0,0.0); |
364 |
|
|
swingAngle = 0.0; |
365 |
|
|
} |
366 |
|
|
} |
367 |
|
|
|
368 |
|
|
|
369 |
|
|
Vector3<Real> rotate(const Vector3<Real>& v) { |
370 |
|
|
|
371 |
|
|
Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(), |
372 |
|
|
v.y() * w() + v.x() * z() - v.z() * x(), |
373 |
|
|
v.z() * w() + v.y() * x() - v.x() * y(), |
374 |
|
|
v.x() * x() + v.y() * y() + v.z() * z()); |
375 |
|
|
|
376 |
|
|
return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(), |
377 |
|
|
w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(), |
378 |
|
|
w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())* |
379 |
|
|
( 1.0/this->lengthSquare() ); |
380 |
|
|
} |
381 |
|
|
|
382 |
|
|
Quaternion<Real>& align (const Vector3<Real>& V1, |
383 |
|
|
const Vector3<Real>& V2) { |
384 |
|
|
|
385 |
|
|
// If V1 and V2 are not parallel, the axis of rotation is the unit-length |
386 |
|
|
// vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation, |
387 |
|
|
// A, is the angle between V1 and V2. The quaternion for the rotation is |
388 |
|
|
// q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz). |
389 |
|
|
// |
390 |
|
|
// (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then |
391 |
|
|
// compute sin(A/2) and cos(A/2), we reduce the computational costs |
392 |
|
|
// by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) = |
393 |
|
|
// Dot(V1,B). |
394 |
|
|
// |
395 |
|
|
// (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but |
396 |
|
|
// Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in |
397 |
|
|
// which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where |
398 |
|
|
// C = Cross(V1,B). |
399 |
|
|
// |
400 |
|
|
// If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2, |
401 |
|
|
// then B = 0. This can happen even if V1 is approximately -V2 using |
402 |
|
|
// floating point arithmetic, since Vector3::Normalize checks for |
403 |
|
|
// closeness to zero and returns the zero vector accordingly. The test |
404 |
|
|
// for exactly zero is usually not recommend for floating point |
405 |
|
|
// arithmetic, but the implementation of Vector3::Normalize guarantees |
406 |
|
|
// the comparison is robust. In this case, the A = pi and any axis |
407 |
|
|
// perpendicular to V1 may be used as the rotation axis. |
408 |
|
|
|
409 |
|
|
Vector3<Real> Bisector = V1 + V2; |
410 |
|
|
Bisector.normalize(); |
411 |
|
|
|
412 |
|
|
Real CosHalfAngle = dot(V1,Bisector); |
413 |
|
|
|
414 |
|
|
this->data_[0] = CosHalfAngle; |
415 |
|
|
|
416 |
|
|
if (CosHalfAngle != (Real)0.0) { |
417 |
|
|
Vector3<Real> Cross = cross(V1, Bisector); |
418 |
|
|
this->data_[1] = Cross.x(); |
419 |
|
|
this->data_[2] = Cross.y(); |
420 |
|
|
this->data_[3] = Cross.z(); |
421 |
|
|
} else { |
422 |
|
|
Real InvLength; |
423 |
|
|
if (fabs(V1[0]) >= fabs(V1[1])) { |
424 |
|
|
// V1.x or V1.z is the largest magnitude component |
425 |
|
|
InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]); |
426 |
|
|
|
427 |
|
|
this->data_[1] = -V1[2]*InvLength; |
428 |
|
|
this->data_[2] = (Real)0.0; |
429 |
|
|
this->data_[3] = +V1[0]*InvLength; |
430 |
|
|
} else { |
431 |
|
|
// V1.y or V1.z is the largest magnitude component |
432 |
|
|
InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]); |
433 |
|
|
|
434 |
|
|
this->data_[1] = (Real)0.0; |
435 |
|
|
this->data_[2] = +V1[2]*InvLength; |
436 |
|
|
this->data_[3] = -V1[1]*InvLength; |
437 |
|
|
} |
438 |
|
|
} |
439 |
|
|
return *this; |
440 |
|
|
} |
441 |
|
|
|
442 |
|
|
void toTwistSwing ( Real& tw, Real& sx, Real& sy ) { |
443 |
|
|
|
444 |
|
|
// First test if the swing is in the singularity: |
445 |
|
|
|
446 |
|
|
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; } |
447 |
|
|
|
448 |
|
|
// Decompose into twist-swing by solving the equation: |
449 |
|
|
// |
450 |
|
|
// Qtwist(t*2) * Qswing(s*2) = q |
451 |
|
|
// |
452 |
|
|
// note: (x,y) is the normalized swing axis (x*x+y*y=1) |
453 |
|
|
// |
454 |
|
|
// ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz ) |
455 |
|
|
// ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1) |
456 |
|
|
// From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2) |
457 |
|
|
// |
458 |
|
|
// The swing rotation/2 s comes from: |
459 |
|
|
// |
460 |
|
|
// From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 => |
461 |
|
|
// Cs = sqrt ( qw^2 + qz^2 ) (3) |
462 |
|
|
// |
463 |
|
|
// From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 => |
464 |
|
|
// Ss = sqrt ( qx^2 + qy^2 ) (4) |
465 |
|
|
// From (1): |SsCt -StSs| |x| = |qx| |
466 |
|
|
// |StSs +SsCt| |y| |qy| (5) |
467 |
|
|
|
468 |
|
|
Real qw, qx, qy, qz; |
469 |
|
|
|
470 |
|
|
if ( w()<0 ) { |
471 |
|
|
qw=-w(); |
472 |
|
|
qx=-x(); |
473 |
|
|
qy=-y(); |
474 |
|
|
qz=-z(); |
475 |
|
|
} else { |
476 |
|
|
qw=w(); |
477 |
|
|
qx=x(); |
478 |
|
|
qy=y(); |
479 |
|
|
qz=z(); |
480 |
|
|
} |
481 |
|
|
|
482 |
|
|
Real t = atan2 ( qz, qw ); // from (2) |
483 |
|
|
Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3) |
484 |
|
|
// and (4) |
485 |
|
|
|
486 |
|
|
Real x=0.0, y=0.0, sins=sin(s); |
487 |
|
|
|
488 |
|
|
if ( !ISZERO(sins,tiny) ) { |
489 |
|
|
Real sint = sin(t); |
490 |
|
|
Real cost = cos(t); |
491 |
|
|
|
492 |
|
|
// by solving the linear system in (5): |
493 |
|
|
y = (-qx*sint + qy*cost)/sins; |
494 |
|
|
x = ( qx*cost + qy*sint)/sins; |
495 |
|
|
} |
496 |
|
|
|
497 |
|
|
tw = (Real)2.0*t; |
498 |
|
|
sx = (Real)2.0*x*s; |
499 |
|
|
sy = (Real)2.0*y*s; |
500 |
|
|
} |
501 |
|
|
|
502 |
|
|
void toSwingTwist(Real& sx, Real& sy, Real& tw ) { |
503 |
|
|
|
504 |
|
|
// Decompose q into swing-twist using a similar development as |
505 |
|
|
// in function toTwistSwing |
506 |
|
|
|
507 |
|
|
if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; } |
508 |
|
|
|
509 |
|
|
Real qw, qx, qy, qz; |
510 |
|
|
if ( w() < 0 ){ |
511 |
|
|
qw=-w(); |
512 |
|
|
qx=-x(); |
513 |
|
|
qy=-y(); |
514 |
|
|
qz=-z(); |
515 |
|
|
} else { |
516 |
|
|
qw=w(); |
517 |
|
|
qx=x(); |
518 |
|
|
qy=y(); |
519 |
|
|
qz=z(); |
520 |
|
|
} |
521 |
|
|
|
522 |
|
|
// Get the twist t: |
523 |
|
|
Real t = 2.0 * atan2(qz,qw); |
524 |
|
|
|
525 |
|
|
Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); |
526 |
|
|
Real gam = t/2.0; |
527 |
|
|
Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet; |
528 |
|
|
Real singam = sin(gam); |
529 |
|
|
Real cosgam = cos(gam); |
530 |
|
|
|
531 |
|
|
sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) ); |
532 |
|
|
sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) ); |
533 |
|
|
tw = Real( t ); |
534 |
|
|
} |
535 |
|
|
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
/** |
539 |
gezelter |
507 |
* Returns the corresponding rotation matrix (3x3) |
540 |
|
|
* @return a 3x3 rotation matrix |
541 |
|
|
*/ |
542 |
|
|
SquareMatrix<Real, 3> toRotationMatrix3() { |
543 |
|
|
SquareMatrix<Real, 3> rotMat3; |
544 |
cli2 |
1360 |
|
545 |
gezelter |
507 |
Real w2; |
546 |
|
|
Real x2; |
547 |
|
|
Real y2; |
548 |
|
|
Real z2; |
549 |
tim |
93 |
|
550 |
gezelter |
507 |
if (!this->isNormalized()) |
551 |
|
|
this->normalize(); |
552 |
tim |
93 |
|
553 |
gezelter |
507 |
w2 = w() * w(); |
554 |
|
|
x2 = x() * x(); |
555 |
|
|
y2 = y() * y(); |
556 |
|
|
z2 = z() * z(); |
557 |
tim |
93 |
|
558 |
gezelter |
507 |
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
559 |
|
|
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
560 |
|
|
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
561 |
tim |
93 |
|
562 |
gezelter |
507 |
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
563 |
|
|
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
564 |
|
|
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
565 |
tim |
93 |
|
566 |
gezelter |
507 |
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
567 |
|
|
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
568 |
|
|
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
569 |
tim |
110 |
|
570 |
gezelter |
507 |
return rotMat3; |
571 |
|
|
} |
572 |
tim |
93 |
|
573 |
gezelter |
507 |
};//end Quaternion |
574 |
tim |
93 |
|
575 |
tim |
110 |
|
576 |
tim |
93 |
/** |
577 |
tim |
110 |
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
578 |
|
|
* @return the vaule of scalar multiplication of this vector |
579 |
|
|
* @param q the source quaternion |
580 |
|
|
* @param s the scalar value |
581 |
|
|
*/ |
582 |
gezelter |
507 |
template<typename Real, unsigned int Dim> |
583 |
|
|
Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) { |
584 |
|
|
Quaternion<Real> result(q); |
585 |
|
|
result.mul(s); |
586 |
|
|
return result; |
587 |
|
|
} |
588 |
tim |
110 |
|
589 |
gezelter |
507 |
/** |
590 |
|
|
* Returns the vaule of scalar multiplication of this quaterion q (q * s). |
591 |
|
|
* @return the vaule of scalar multiplication of this vector |
592 |
|
|
* @param s the scalar value |
593 |
|
|
* @param q the source quaternion |
594 |
|
|
*/ |
595 |
|
|
template<typename Real, unsigned int Dim> |
596 |
|
|
Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) { |
597 |
|
|
Quaternion<Real> result(q); |
598 |
|
|
result.mul(s); |
599 |
|
|
return result; |
600 |
|
|
} |
601 |
tim |
110 |
|
602 |
gezelter |
507 |
/** |
603 |
|
|
* Returns the multiplication of two quaternion |
604 |
|
|
* @return the multiplication of two quaternion |
605 |
|
|
* @param q1 the first quaternion |
606 |
|
|
* @param q2 the second quaternion |
607 |
|
|
*/ |
608 |
|
|
template<typename Real> |
609 |
|
|
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
610 |
|
|
Quaternion<Real> result(q1); |
611 |
|
|
result *= q2; |
612 |
|
|
return result; |
613 |
|
|
} |
614 |
tim |
93 |
|
615 |
gezelter |
507 |
/** |
616 |
|
|
* Returns the division of two quaternion |
617 |
|
|
* @param q1 divisor |
618 |
|
|
* @param q2 dividen |
619 |
|
|
*/ |
620 |
tim |
93 |
|
621 |
gezelter |
507 |
template<typename Real> |
622 |
|
|
inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) { |
623 |
|
|
return q1 * q2.inverse(); |
624 |
|
|
} |
625 |
tim |
93 |
|
626 |
gezelter |
507 |
/** |
627 |
|
|
* Returns the value of the division of a scalar by a quaternion |
628 |
|
|
* @return the value of the division of a scalar by a quaternion |
629 |
|
|
* @param s scalar |
630 |
|
|
* @param q quaternion |
631 |
|
|
* @note for a quaternion q, 1/q = q.inverse() |
632 |
|
|
*/ |
633 |
|
|
template<typename Real> |
634 |
|
|
Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) { |
635 |
tim |
93 |
|
636 |
gezelter |
507 |
Quaternion<Real> x; |
637 |
|
|
x = q.inverse(); |
638 |
|
|
x *= s; |
639 |
|
|
return x; |
640 |
|
|
} |
641 |
tim |
110 |
|
642 |
gezelter |
507 |
template <class T> |
643 |
|
|
inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) { |
644 |
|
|
return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]); |
645 |
|
|
} |
646 |
tim |
110 |
|
647 |
tim |
963 |
typedef Quaternion<RealType> Quat4d; |
648 |
tim |
92 |
} |
649 |
|
|
#endif //MATH_QUATERNION_HPP |