ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Polynomial.hpp
(Generate patch)

Comparing:
trunk/src/math/Polynomial.hpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/math/Polynomial.hpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include <list>
55   #include <map>
56   #include <utility>
57 + #include <complex>
58   #include "config.h"
59 < namespace oopse {
59 > #include "math/Eigenvalue.hpp"
60  
61 <  template<typename ElemType> ElemType pow(ElemType x, int N) {
62 <    ElemType result(1);
61 > namespace OpenMD {
62 >  
63 >  template<typename Real> Real fastpow(Real x, int N) {
64 >    Real result(1); //or 1.0?
65  
66      for (int i = 0; i < N; ++i) {
67        result *= x;
# Line 70 | Line 74 | namespace oopse {
74     * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
75     * A generic Polynomial class
76     */
77 <  template<typename ElemType>
77 >  template<typename Real>
78    class Polynomial {
79  
80    public:
81 <    typedef Polynomial<ElemType> PolynomialType;    
81 >    typedef Polynomial<Real> PolynomialType;    
82      typedef int ExponentType;
83 <    typedef ElemType CoefficientType;
83 >    typedef Real CoefficientType;
84      typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
85      typedef typename PolynomialPairMap::iterator iterator;
86      typedef typename PolynomialPairMap::const_iterator const_iterator;
87  
88      Polynomial() {}
89 <    Polynomial(ElemType v) {setCoefficient(0, v);}
89 >    Polynomial(Real v) {setCoefficient(0, v);}
90      /**
91       * Calculates the value of this Polynomial evaluated at the given x value.
92 <     * @return The value of this Polynomial evaluates at the given x value
93 <     * @param x the value of the independent variable for this Polynomial function
92 >     * @return The value of this Polynomial evaluates at the given x value  
93 >     * @param x the value of the independent variable for this
94 >     * Polynomial function
95       */
96 <    ElemType evaluate(const ElemType& x) {
97 <      ElemType result = ElemType();
96 >    Real evaluate(const Real& x) {
97 >      Real result = Real();
98        ExponentType exponent;
99        CoefficientType coefficient;
100              
101        for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
102          exponent = i->first;
103          coefficient = i->second;
104 <        result  += pow(x, exponent) * coefficient;
104 >        result  += fastpow(x, exponent) * coefficient;
105        }
106  
107        return result;
# Line 107 | Line 112 | namespace oopse {
112       * @return the first derivative of this polynomial
113       * @param x
114       */
115 <    ElemType evaluateDerivative(const ElemType& x) {
116 <      ElemType result = ElemType();
115 >    Real evaluateDerivative(const Real& x) {
116 >      Real result = Real();
117        ExponentType exponent;
118        CoefficientType coefficient;
119              
120        for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
121          exponent = i->first;
122          coefficient = i->second;
123 <        result  += pow(x, exponent - 1) * coefficient * exponent;
123 >        result  += fastpow(x, exponent - 1) * coefficient * exponent;
124        }
125  
126        return result;
127      }
128  
129 +
130      /**
131 <     * Set the coefficent of the specified exponent, if the coefficient is already there, it
132 <     * will be overwritten.
131 >     * Set the coefficent of the specified exponent, if the
132 >     * coefficient is already there, it will be overwritten.
133       * @param exponent exponent of a term in this Polynomial
134       * @param coefficient multiplier of a term in this Polynomial
135 <     */
136 <        
137 <    void setCoefficient(int exponent, const ElemType& coefficient) {
132 <      polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient));
135 >     */        
136 >    void setCoefficient(int exponent, const Real& coefficient) {
137 >      polyPairMap_[exponent] = coefficient;
138      }
139 <
139 >    
140      /**
141 <     * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the
142 <     * new coefficient to the old one, otherwise,  just call setCoefficent
141 >     * Set the coefficent of the specified exponent. If the
142 >     * coefficient is already there, just add the new coefficient to
143 >     * the old one, otherwise, just call setCoefficent
144       * @param exponent exponent of a term in this Polynomial
145       * @param coefficient multiplier of a term in this Polynomial
146 <     */
147 <        
142 <    void addCoefficient(int exponent, const ElemType& coefficient) {
146 >     */        
147 >    void addCoefficient(int exponent, const Real& coefficient) {
148        iterator i = polyPairMap_.find(exponent);
149  
150        if (i != end()) {
# Line 149 | Line 154 | namespace oopse {
154        }
155      }
156  
152
157      /**
158 <     * Returns the coefficient associated with the given power for this Polynomial.
159 <     * @return the coefficient associated with the given power for this Polynomial
160 <     * @exponent exponent of any term in this Polynomial
158 >     * Returns the coefficient associated with the given power for
159 >     * this Polynomial.
160 >     * @return the coefficient associated with the given power for
161 >     * this Polynomial
162 >     * @param exponent exponent of any term in this Polynomial
163       */
164 <    ElemType getCoefficient(ExponentType exponent) {
164 >    Real getCoefficient(ExponentType exponent) {
165        iterator i = polyPairMap_.find(exponent);
166  
167        if (i != end()) {
168          return i->second;
169        } else {
170 <        return ElemType(0);
170 >        return Real(0);
171        }
172      }
173  
# Line 189 | Line 195 | namespace oopse {
195        return polyPairMap_.size();
196      }
197  
198 <    PolynomialType& operator += (const PolynomialType& p) {
199 <        typename Polynomial<ElemType>::const_iterator i;
198 >    int degree() {
199 >      int deg = 0;
200 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
201 >        if (i->first > deg)
202 >          deg = i->first;
203 >      }
204 >      return deg;
205 >    }
206  
207 <        for (i =  p.begin(); i  != p.end(); ++i) {
196 <          this->addCoefficient(i->first, i->second);
197 <        }
207 >    PolynomialType& operator = (const PolynomialType& p) {
208  
209 <        return *this;        
210 <    }
209 >      if (this != &p)  // protect against invalid self-assignment
210 >        {
211 >          typename Polynomial<Real>::const_iterator i;
212  
213 <    PolynomialType& operator -= (const PolynomialType& p) {
214 <        typename Polynomial<ElemType>::const_iterator i;
215 <        for (i =  p.begin(); i  != p.end(); ++i) {
216 <          this->addCoefficient(i->first, -i->second);
217 <        }        
218 <        return *this;
213 >          polyPairMap_.clear();  // clear out the old map
214 >      
215 >          for (i =  p.begin(); i != p.end(); ++i) {
216 >            this->setCoefficient(i->first, i->second);
217 >          }
218 >        }
219 >      // by convention, always return *this
220 >      return *this;
221      }
222  
223 <    PolynomialType& operator *= (const PolynomialType& p) {
224 <    typename Polynomial<ElemType>::const_iterator i;
225 <    typename Polynomial<ElemType>::const_iterator j;
226 <    
227 <    for (i = this->begin(); i !=this->end(); ++i) {
215 <      for (j = p.begin(); j !=p.end(); ++j) {
216 <        this->addCoefficient( i->first + j->first, i->second * j->second);
223 >    PolynomialType& operator += (const PolynomialType& p) {
224 >      typename Polynomial<Real>::const_iterator i;
225 >
226 >      for (i =  p.begin(); i  != p.end(); ++i) {
227 >        this->addCoefficient(i->first, i->second);
228        }
229 +
230 +      return *this;        
231      }
232  
233 <    return *this;
233 >    PolynomialType& operator -= (const PolynomialType& p) {
234 >      typename Polynomial<Real>::const_iterator i;
235 >      for (i =  p.begin(); i  != p.end(); ++i) {
236 >        this->addCoefficient(i->first, -i->second);
237 >      }        
238 >      return *this;
239      }
240 +    
241 +    PolynomialType& operator *= (const PolynomialType& p) {
242 +      typename Polynomial<Real>::const_iterator i;
243 +      typename Polynomial<Real>::const_iterator j;
244 +      Polynomial<Real> p2(*this);
245 +      
246 +      polyPairMap_.clear();  // clear out old map
247 +      for (i = p2.begin(); i !=p2.end(); ++i) {
248 +        for (j = p.begin(); j !=p.end(); ++j) {
249 +          this->addCoefficient( i->first + j->first, i->second * j->second);
250 +        }
251 +      }
252 +      return *this;
253 +    }
254  
255 +    //PolynomialType& operator *= (const Real v)
256 +    PolynomialType& operator *= (const Real v) {
257 +      typename Polynomial<Real>::const_iterator i;
258 +      //Polynomial<Real> result;
259 +      
260 +      for (i = this->begin(); i != this->end(); ++i) {
261 +        this->setCoefficient( i->first, i->second*v);
262 +      }
263 +      
264 +      return *this;
265 +    }
266 +
267 +    PolynomialType& operator += (const Real v) {    
268 +      this->addCoefficient( 0, v);
269 +      return *this;
270 +    }
271 +
272 +    /**
273 +     * Returns the first derivative of this polynomial.
274 +     * @return the first derivative of this polynomial
275 +     */
276 +    PolynomialType* getDerivative() {
277 +      Polynomial<Real>* p = new Polynomial<Real>();
278 +      
279 +      typename Polynomial<Real>::const_iterator i;
280 +      ExponentType exponent;
281 +      CoefficientType coefficient;
282 +      
283 +      for (i =  this->begin(); i  != this->end(); ++i) {
284 +        exponent = i->first;
285 +        coefficient = i->second;
286 +        p->setCoefficient(exponent-1, coefficient * exponent);
287 +      }
288 +    
289 +      return p;
290 +    }
291 +
292 +    // Creates the Companion matrix for a given polynomial
293 +    DynamicRectMatrix<Real> CreateCompanion() {
294 +      int rank = degree();
295 +      DynamicRectMatrix<Real> mat(rank, rank);
296 +      Real majorCoeff = getCoefficient(rank);
297 +      for(int i = 0; i < rank; ++i) {
298 +        for(int j = 0; j < rank; ++j) {
299 +          if(i - j == 1) {
300 +            mat(i, j) = 1;
301 +          } else if(j == rank-1) {
302 +            mat(i, j) = -1 * getCoefficient(i) / majorCoeff;
303 +          }
304 +        }
305 +      }
306 +      return mat;
307 +    }
308 +    
309 +    // Find the Roots of a given polynomial
310 +    std::vector<complex<Real> > FindRoots() {
311 +      int rank = degree();
312 +      DynamicRectMatrix<Real> companion = CreateCompanion();
313 +      JAMA::Eigenvalue<Real> eig(companion);
314 +      DynamicVector<Real> reals, imags;
315 +      eig.getRealEigenvalues(reals);
316 +      eig.getImagEigenvalues(imags);
317 +      
318 +      std::vector<complex<Real> > roots;
319 +      for (int i = 0; i < rank; i++) {
320 +        roots.push_back(complex<Real>(reals(i), imags(i)));
321 +      }
322 +
323 +      return roots;
324 +    }
325 +
326 +    std::vector<Real> FindRealRoots() {
327 +      
328 +      const Real fEpsilon = 1.0e-8;
329 +      std::vector<Real> roots;
330 +      roots.clear();
331 +      
332 +      const int deg = degree();
333 +      
334 +      switch (deg) {
335 +      case 1: {
336 +        Real fC1 = getCoefficient(1);
337 +        Real fC0 = getCoefficient(0);
338 +        roots.push_back( -fC0 / fC1);
339 +        return roots;
340 +      }
341 +      case 2: {
342 +        Real fC2 = getCoefficient(2);
343 +        Real fC1 = getCoefficient(1);
344 +        Real fC0 = getCoefficient(0);
345 +        Real fDiscr = fC1*fC1 - 4.0*fC0*fC2;
346 +        if (abs(fDiscr) <= fEpsilon) {
347 +          fDiscr = (Real)0.0;
348 +        }
349 +        
350 +        if (fDiscr < (Real)0.0) {  // complex roots only
351 +          return roots;
352 +        }
353 +        
354 +        Real fTmp = ((Real)0.5)/fC2;
355 +        
356 +        if (fDiscr > (Real)0.0) { // 2 real roots
357 +          fDiscr = sqrt(fDiscr);
358 +          roots.push_back(fTmp*(-fC1 - fDiscr));
359 +          roots.push_back(fTmp*(-fC1 + fDiscr));
360 +        } else {
361 +          roots.push_back(-fTmp * fC1);  // 1 real root
362 +        }
363 +      }
364 +        return roots;      
365 +      case 3: {
366 +        Real fC3 = getCoefficient(3);
367 +        Real fC2 = getCoefficient(2);
368 +        Real fC1 = getCoefficient(1);
369 +        Real fC0 = getCoefficient(0);
370 +      
371 +        // make polynomial monic, x^3+c2*x^2+c1*x+c0
372 +        Real fInvC3 = ((Real)1.0)/fC3;
373 +        fC0 *= fInvC3;
374 +        fC1 *= fInvC3;
375 +        fC2 *= fInvC3;
376 +      
377 +        // convert to y^3+a*y+b = 0 by x = y-c2/3
378 +        const Real fThird = (Real)1.0/(Real)3.0;
379 +        const Real fTwentySeventh = (Real)1.0/(Real)27.0;
380 +        Real fOffset = fThird*fC2;
381 +        Real fA = fC1 - fC2*fOffset;
382 +        Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh;
383 +        Real fHalfB = ((Real)0.5)*fB;
384 +      
385 +        Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh;
386 +        if (fabs(fDiscr) <= fEpsilon) {
387 +          fDiscr = (Real)0.0;
388 +        }
389 +      
390 +        if (fDiscr > (Real)0.0) {  // 1 real, 2 complex roots
391 +        
392 +          fDiscr = sqrt(fDiscr);
393 +          Real fTemp = -fHalfB + fDiscr;
394 +          Real root;
395 +          if (fTemp >= (Real)0.0) {
396 +            root = pow(fTemp,fThird);
397 +          } else {
398 +            root = -pow(-fTemp,fThird);
399 +          }
400 +          fTemp = -fHalfB - fDiscr;
401 +          if ( fTemp >= (Real)0.0 ) {
402 +            root += pow(fTemp,fThird);          
403 +          } else {
404 +            root -= pow(-fTemp,fThird);
405 +          }
406 +          root -= fOffset;
407 +        
408 +          roots.push_back(root);
409 +        } else if (fDiscr < (Real)0.0) {
410 +          const Real fSqrt3 = sqrt((Real)3.0);
411 +          Real fDist = sqrt(-fThird*fA);
412 +          Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB);
413 +          Real fCos = cos(fAngle);
414 +          Real fSin = sin(fAngle);
415 +          roots.push_back(((Real)2.0)*fDist*fCos-fOffset);
416 +          roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset);
417 +          roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset);
418 +        } else {
419 +          Real fTemp;
420 +          if (fHalfB >= (Real)0.0) {
421 +            fTemp = -pow(fHalfB,fThird);
422 +          } else {
423 +            fTemp = pow(-fHalfB,fThird);
424 +          }
425 +          roots.push_back(((Real)2.0)*fTemp-fOffset);
426 +          roots.push_back(-fTemp-fOffset);
427 +          roots.push_back(-fTemp-fOffset);
428 +        }
429 +      }
430 +        return roots;
431 +      case 4: {
432 +        Real fC4 = getCoefficient(4);
433 +        Real fC3 = getCoefficient(3);
434 +        Real fC2 = getCoefficient(2);
435 +        Real fC1 = getCoefficient(1);
436 +        Real fC0 = getCoefficient(0);
437 +      
438 +        // make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0
439 +        Real fInvC4 = ((Real)1.0)/fC4;
440 +        fC0 *= fInvC4;
441 +        fC1 *= fInvC4;
442 +        fC2 *= fInvC4;
443 +        fC3 *= fInvC4;
444 +  
445 +        // reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0
446 +        Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1;
447 +        Real fR1 = fC3*fC1 - ((Real)4.0)*fC0;
448 +        Real fR2 = -fC2;
449 +        Polynomial<Real> tempCubic;
450 +        tempCubic.setCoefficient(0, fR0);
451 +        tempCubic.setCoefficient(1, fR1);
452 +        tempCubic.setCoefficient(2, fR2);
453 +        tempCubic.setCoefficient(3, 1.0);
454 +        std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always
455 +        // produces
456 +        // at
457 +        // least
458 +        // one
459 +        // root
460 +        Real fY = cubeRoots[0];
461 +      
462 +        Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY;
463 +        if (fabs(fDiscr) <= fEpsilon) {
464 +          fDiscr = (Real)0.0;
465 +        }
466    
467 +        if (fDiscr > (Real)0.0) {
468 +          Real fR = sqrt(fDiscr);
469 +          Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2;
470 +          Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) /
471 +            (((Real)4.0)*fR);
472 +      
473 +          Real fTplus = fT1+fT2;
474 +          Real fTminus = fT1-fT2;
475 +          if (fabs(fTplus) <= fEpsilon) {
476 +            fTplus = (Real)0.0;
477 +          }
478 +          if (fabs(fTminus) <= fEpsilon) {
479 +            fTminus = (Real)0.0;
480 +          }
481 +      
482 +          if (fTplus >= (Real)0.0) {
483 +            Real fD = sqrt(fTplus);
484 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD));
485 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD));
486 +          }
487 +          if (fTminus >= (Real)0.0) {
488 +            Real fE = sqrt(fTminus);
489 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR));
490 +            roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR));
491 +          }
492 +        } else if (fDiscr < (Real)0.0) {
493 +          //roots.clear();
494 +        } else {        
495 +          Real fT2 = fY*fY-((Real)4.0)*fC0;
496 +          if (fT2 >= -fEpsilon) {
497 +            if (fT2 < (Real)0.0) { // round to zero
498 +              fT2 = (Real)0.0;
499 +            }
500 +            fT2 = ((Real)2.0)*sqrt(fT2);
501 +            Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2;
502 +            if (fT1+fT2 >= fEpsilon) {
503 +              Real fD = sqrt(fT1+fT2);
504 +              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD);
505 +              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD);
506 +            }
507 +            if (fT1-fT2 >= fEpsilon) {
508 +              Real fE = sqrt(fT1-fT2);
509 +              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE);
510 +              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE);
511 +            }
512 +          }
513 +        }
514 +      }
515 +        return roots;
516 +      default: {
517 +        DynamicRectMatrix<Real> companion = CreateCompanion();
518 +        JAMA::Eigenvalue<Real> eig(companion);
519 +        DynamicVector<Real> reals, imags;
520 +        eig.getRealEigenvalues(reals);
521 +        eig.getImagEigenvalues(imags);
522 +      
523 +        for (int i = 0; i < deg; i++) {
524 +          if (fabs(imags(i)) < fEpsilon)
525 +            roots.push_back(reals(i));        
526 +        }      
527 +      }
528 +        return roots;
529 +      }
530 +    }
531 +    
532    private:
533          
534      PolynomialPairMap polyPairMap_;
535    };
536  
537 <
537 >  
538    /**
539     * Generates and returns the product of two given Polynomials.
540     * @return A Polynomial containing the product of the two given Polynomial parameters
541     */
542 <  template<typename ElemType>
543 <  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
544 <    typename Polynomial<ElemType>::const_iterator i;
545 <    typename Polynomial<ElemType>::const_iterator j;
546 <    Polynomial<ElemType> p;
542 >  template<typename Real>
543 >  Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
544 >    typename Polynomial<Real>::const_iterator i;
545 >    typename Polynomial<Real>::const_iterator j;
546 >    Polynomial<Real> p;
547      
548      for (i = p1.begin(); i !=p1.end(); ++i) {
549        for (j = p2.begin(); j !=p2.end(); ++j) {
# Line 246 | Line 554 | namespace oopse {
554      return p;
555    }
556  
557 <  template<typename ElemType>
558 <  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
559 <    typename Polynomial<ElemType>::const_iterator i;
560 <    Polynomial<ElemType> result;
557 >  template<typename Real>
558 >  Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) {
559 >    typename Polynomial<Real>::const_iterator i;
560 >    Polynomial<Real> result;
561      
562      for (i = p.begin(); i !=p.end(); ++i) {
563 <        result.addCoefficient( i->first , i->second * v);
563 >        result.setCoefficient( i->first , i->second * v);
564      }
565  
566      return result;
567    }
568  
569 <  template<typename ElemType>
570 <  Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
571 <    typename Polynomial<ElemType>::const_iterator i;
572 <    Polynomial<ElemType> result;
569 >  template<typename Real>
570 >  Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) {
571 >    typename Polynomial<Real>::const_iterator i;
572 >    Polynomial<Real> result;
573      
574      for (i = p.begin(); i !=p.end(); ++i) {
575 <        result.addCoefficient( i->first , i->second * v);
575 >        result.setCoefficient( i->first , i->second * v);
576      }
577  
578      return result;
# Line 275 | Line 583 | namespace oopse {
583     * @param p1 the first polynomial
584     * @param p2 the second polynomial
585     */
586 <  template<typename ElemType>
587 <  Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
588 <    Polynomial<ElemType> p(p1);
586 >  template<typename Real>
587 >  Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
588 >    Polynomial<Real> p(p1);
589  
590 <    typename Polynomial<ElemType>::const_iterator i;
590 >    typename Polynomial<Real>::const_iterator i;
591  
592      for (i =  p2.begin(); i  != p2.end(); ++i) {
593        p.addCoefficient(i->first, i->second);
# Line 295 | Line 603 | namespace oopse {
603     * @param p1 the first polynomial
604     * @param p2 the second polynomial
605     */
606 <  template<typename ElemType>
607 <  Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
608 <    Polynomial<ElemType> p(p1);
606 >  template<typename Real>
607 >  Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
608 >    Polynomial<Real> p(p1);
609  
610 <    typename Polynomial<ElemType>::const_iterator i;
610 >    typename Polynomial<Real>::const_iterator i;
611  
612      for (i =  p2.begin(); i  != p2.end(); ++i) {
613        p.addCoefficient(i->first, -i->second);
# Line 310 | Line 618 | namespace oopse {
618    }
619  
620    /**
621 +   * Returns the first derivative of this polynomial.
622 +   * @return the first derivative of this polynomial
623 +   */
624 +  template<typename Real>
625 +  Polynomial<Real> * getDerivative(const Polynomial<Real>& p1) {
626 +    Polynomial<Real> * p = new Polynomial<Real>();
627 +    
628 +    typename Polynomial<Real>::const_iterator i;
629 +    int exponent;
630 +    Real coefficient;
631 +    
632 +    for (i =  p1.begin(); i  != p1.end(); ++i) {
633 +      exponent = i->first;
634 +      coefficient = i->second;
635 +      p->setCoefficient(exponent-1, coefficient * exponent);
636 +    }
637 +    
638 +    return p;
639 +  }
640 +
641 +  /**
642     * Tests if two polynomial have the same exponents
643     * @return true if all of the exponents in these Polynomial are identical
644     * @param p1 the first polynomial
645     * @param p2 the second polynomial
646     * @note this function does not compare the coefficient
647     */
648 <  template<typename ElemType>
649 <  bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
648 >  template<typename Real>
649 >  bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
650  
651 <    typename Polynomial<ElemType>::const_iterator i;
652 <    typename Polynomial<ElemType>::const_iterator j;
651 >    typename Polynomial<Real>::const_iterator i;
652 >    typename Polynomial<Real>::const_iterator j;
653  
654      if (p1.size() != p2.size() ) {
655        return false;
# Line 335 | Line 664 | namespace oopse {
664      return true;
665    }
666  
667 +
668 +
669    typedef Polynomial<RealType> DoublePolynomial;
670  
671 < } //end namespace oopse
671 > } //end namespace OpenMD
672   #endif //MATH_POLYNOMIAL_HPP

Comparing:
trunk/src/math/Polynomial.hpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/math/Polynomial.hpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines