6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
53 |
|
#include <list> |
54 |
|
#include <map> |
55 |
|
#include <utility> |
56 |
+ |
#include <complex> |
57 |
+ |
#include "config.h" |
58 |
+ |
#include "math/Eigenvalue.hpp" |
59 |
|
|
60 |
< |
namespace oopse { |
60 |
> |
namespace OpenMD { |
61 |
> |
|
62 |
> |
template<typename Real> Real fastpow(Real x, int N) { |
63 |
> |
Real result(1); //or 1.0? |
64 |
|
|
59 |
– |
template<typename ElemType> ElemType pow(ElemType x, int N) { |
60 |
– |
ElemType result(1); |
61 |
– |
|
65 |
|
for (int i = 0; i < N; ++i) { |
66 |
|
result *= x; |
67 |
|
} |
73 |
|
* @class Polynomial Polynomial.hpp "math/Polynomial.hpp" |
74 |
|
* A generic Polynomial class |
75 |
|
*/ |
76 |
< |
template<typename ElemType> |
76 |
> |
template<typename Real> |
77 |
|
class Polynomial { |
78 |
|
|
79 |
|
public: |
80 |
< |
typedef Polynomial<ElemType> PolynomialType; |
80 |
> |
typedef Polynomial<Real> PolynomialType; |
81 |
|
typedef int ExponentType; |
82 |
< |
typedef ElemType CoefficientType; |
82 |
> |
typedef Real CoefficientType; |
83 |
|
typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; |
84 |
|
typedef typename PolynomialPairMap::iterator iterator; |
85 |
|
typedef typename PolynomialPairMap::const_iterator const_iterator; |
86 |
|
|
87 |
|
Polynomial() {} |
88 |
< |
Polynomial(ElemType v) {setCoefficient(0, v);} |
88 |
> |
Polynomial(Real v) {setCoefficient(0, v);} |
89 |
|
/** |
90 |
|
* Calculates the value of this Polynomial evaluated at the given x value. |
91 |
< |
* @return The value of this Polynomial evaluates at the given x value |
92 |
< |
* @param x the value of the independent variable for this Polynomial function |
91 |
> |
* @return The value of this Polynomial evaluates at the given x value |
92 |
> |
* @param x the value of the independent variable for this |
93 |
> |
* Polynomial function |
94 |
|
*/ |
95 |
< |
ElemType evaluate(const ElemType& x) { |
96 |
< |
ElemType result = ElemType(); |
95 |
> |
Real evaluate(const Real& x) { |
96 |
> |
Real result = Real(); |
97 |
|
ExponentType exponent; |
98 |
|
CoefficientType coefficient; |
99 |
|
|
100 |
|
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
101 |
|
exponent = i->first; |
102 |
|
coefficient = i->second; |
103 |
< |
result += pow(x, exponent) * coefficient; |
103 |
> |
result += fastpow(x, exponent) * coefficient; |
104 |
|
} |
105 |
|
|
106 |
|
return result; |
111 |
|
* @return the first derivative of this polynomial |
112 |
|
* @param x |
113 |
|
*/ |
114 |
< |
ElemType evaluateDerivative(const ElemType& x) { |
115 |
< |
ElemType result = ElemType(); |
114 |
> |
Real evaluateDerivative(const Real& x) { |
115 |
> |
Real result = Real(); |
116 |
|
ExponentType exponent; |
117 |
|
CoefficientType coefficient; |
118 |
|
|
119 |
|
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
120 |
|
exponent = i->first; |
121 |
|
coefficient = i->second; |
122 |
< |
result += pow(x, exponent - 1) * coefficient * exponent; |
122 |
> |
result += fastpow(x, exponent - 1) * coefficient * exponent; |
123 |
|
} |
124 |
|
|
125 |
|
return result; |
126 |
|
} |
127 |
|
|
128 |
+ |
|
129 |
|
/** |
130 |
< |
* Set the coefficent of the specified exponent, if the coefficient is already there, it |
131 |
< |
* will be overwritten. |
130 |
> |
* Set the coefficent of the specified exponent, if the |
131 |
> |
* coefficient is already there, it will be overwritten. |
132 |
|
* @param exponent exponent of a term in this Polynomial |
133 |
|
* @param coefficient multiplier of a term in this Polynomial |
134 |
< |
*/ |
135 |
< |
|
136 |
< |
void setCoefficient(int exponent, const ElemType& coefficient) { |
132 |
< |
polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); |
134 |
> |
*/ |
135 |
> |
void setCoefficient(int exponent, const Real& coefficient) { |
136 |
> |
polyPairMap_[exponent] = coefficient; |
137 |
|
} |
138 |
< |
|
138 |
> |
|
139 |
|
/** |
140 |
< |
* Set the coefficent of the specified exponent. If the coefficient is already there, just add the |
141 |
< |
* new coefficient to the old one, otherwise, just call setCoefficent |
140 |
> |
* Set the coefficent of the specified exponent. If the |
141 |
> |
* coefficient is already there, just add the new coefficient to |
142 |
> |
* the old one, otherwise, just call setCoefficent |
143 |
|
* @param exponent exponent of a term in this Polynomial |
144 |
|
* @param coefficient multiplier of a term in this Polynomial |
145 |
< |
*/ |
146 |
< |
|
142 |
< |
void addCoefficient(int exponent, const ElemType& coefficient) { |
145 |
> |
*/ |
146 |
> |
void addCoefficient(int exponent, const Real& coefficient) { |
147 |
|
iterator i = polyPairMap_.find(exponent); |
148 |
|
|
149 |
|
if (i != end()) { |
153 |
|
} |
154 |
|
} |
155 |
|
|
152 |
– |
|
156 |
|
/** |
157 |
< |
* Returns the coefficient associated with the given power for this Polynomial. |
158 |
< |
* @return the coefficient associated with the given power for this Polynomial |
157 |
> |
* Returns the coefficient associated with the given power for |
158 |
> |
* this Polynomial. |
159 |
> |
* @return the coefficient associated with the given power for |
160 |
> |
* this Polynomial |
161 |
|
* @exponent exponent of any term in this Polynomial |
162 |
|
*/ |
163 |
< |
ElemType getCoefficient(ExponentType exponent) { |
163 |
> |
Real getCoefficient(ExponentType exponent) { |
164 |
|
iterator i = polyPairMap_.find(exponent); |
165 |
|
|
166 |
|
if (i != end()) { |
167 |
|
return i->second; |
168 |
|
} else { |
169 |
< |
return ElemType(0); |
169 |
> |
return Real(0); |
170 |
|
} |
171 |
|
} |
172 |
|
|
194 |
|
return polyPairMap_.size(); |
195 |
|
} |
196 |
|
|
197 |
< |
PolynomialType& operator += (const PolynomialType& p) { |
198 |
< |
typename Polynomial<ElemType>::const_iterator i; |
197 |
> |
int degree() { |
198 |
> |
int deg = 0; |
199 |
> |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
200 |
> |
if (i->first > deg) |
201 |
> |
deg = i->first; |
202 |
> |
} |
203 |
> |
return deg; |
204 |
> |
} |
205 |
|
|
206 |
< |
for (i = p.begin(); i != p.end(); ++i) { |
196 |
< |
this->addCoefficient(i->first, i->second); |
197 |
< |
} |
206 |
> |
PolynomialType& operator = (const PolynomialType& p) { |
207 |
|
|
208 |
< |
return *this; |
209 |
< |
} |
208 |
> |
if (this != &p) // protect against invalid self-assignment |
209 |
> |
{ |
210 |
> |
typename Polynomial<Real>::const_iterator i; |
211 |
|
|
212 |
< |
PolynomialType& operator -= (const PolynomialType& p) { |
213 |
< |
typename Polynomial<ElemType>::const_iterator i; |
214 |
< |
for (i = p.begin(); i != p.end(); ++i) { |
215 |
< |
this->addCoefficient(i->first, -i->second); |
216 |
< |
} |
212 |
> |
polyPairMap_.clear(); // clear out the old map |
213 |
> |
|
214 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
215 |
> |
this->setCoefficient(i->first, i->second); |
216 |
> |
} |
217 |
> |
} |
218 |
> |
// by convention, always return *this |
219 |
> |
return *this; |
220 |
|
} |
221 |
|
|
222 |
< |
PolynomialType& operator *= (const PolynomialType& p) { |
223 |
< |
typename Polynomial<ElemType>::const_iterator i; |
224 |
< |
typename Polynomial<ElemType>::const_iterator j; |
225 |
< |
|
226 |
< |
for (i = this->begin(); i !=this->end(); ++i) { |
214 |
< |
for (j = p.begin(); j !=p.end(); ++j) { |
215 |
< |
this->addCoefficient( i->first + j->first, i->second * j->second); |
222 |
> |
PolynomialType& operator += (const PolynomialType& p) { |
223 |
> |
typename Polynomial<Real>::const_iterator i; |
224 |
> |
|
225 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
226 |
> |
this->addCoefficient(i->first, i->second); |
227 |
|
} |
228 |
+ |
|
229 |
+ |
return *this; |
230 |
|
} |
231 |
|
|
232 |
< |
return *this; |
232 |
> |
PolynomialType& operator -= (const PolynomialType& p) { |
233 |
> |
typename Polynomial<Real>::const_iterator i; |
234 |
> |
for (i = p.begin(); i != p.end(); ++i) { |
235 |
> |
this->addCoefficient(i->first, -i->second); |
236 |
> |
} |
237 |
> |
return *this; |
238 |
|
} |
239 |
+ |
|
240 |
+ |
PolynomialType& operator *= (const PolynomialType& p) { |
241 |
+ |
typename Polynomial<Real>::const_iterator i; |
242 |
+ |
typename Polynomial<Real>::const_iterator j; |
243 |
+ |
Polynomial<Real> p2(*this); |
244 |
+ |
|
245 |
+ |
polyPairMap_.clear(); // clear out old map |
246 |
+ |
for (i = p2.begin(); i !=p2.end(); ++i) { |
247 |
+ |
for (j = p.begin(); j !=p.end(); ++j) { |
248 |
+ |
this->addCoefficient( i->first + j->first, i->second * j->second); |
249 |
+ |
} |
250 |
+ |
} |
251 |
+ |
return *this; |
252 |
+ |
} |
253 |
|
|
254 |
+ |
//PolynomialType& operator *= (const Real v) |
255 |
+ |
PolynomialType& operator *= (const Real v) { |
256 |
+ |
typename Polynomial<Real>::const_iterator i; |
257 |
+ |
//Polynomial<Real> result; |
258 |
+ |
|
259 |
+ |
for (i = this->begin(); i != this->end(); ++i) { |
260 |
+ |
this->setCoefficient( i->first, i->second*v); |
261 |
+ |
} |
262 |
+ |
|
263 |
+ |
return *this; |
264 |
+ |
} |
265 |
+ |
|
266 |
+ |
PolynomialType& operator += (const Real v) { |
267 |
+ |
this->addCoefficient( 0, v); |
268 |
+ |
return *this; |
269 |
+ |
} |
270 |
+ |
|
271 |
+ |
/** |
272 |
+ |
* Returns the first derivative of this polynomial. |
273 |
+ |
* @return the first derivative of this polynomial |
274 |
+ |
*/ |
275 |
+ |
PolynomialType & getDerivative() { |
276 |
+ |
Polynomial<Real> p(); |
277 |
+ |
|
278 |
+ |
typename Polynomial<Real>::const_iterator i; |
279 |
+ |
ExponentType exponent; |
280 |
+ |
CoefficientType coefficient; |
281 |
+ |
|
282 |
+ |
for (i = this->begin(); i != this->end(); ++i) { |
283 |
+ |
exponent = i->first; |
284 |
+ |
coefficient = i->second; |
285 |
+ |
p.setCoefficient(exponent-1, coefficient * exponent); |
286 |
+ |
} |
287 |
+ |
|
288 |
+ |
return p; |
289 |
+ |
} |
290 |
+ |
|
291 |
+ |
// Creates the Companion matrix for a given polynomial |
292 |
+ |
DynamicRectMatrix<Real> CreateCompanion() { |
293 |
+ |
int rank = degree(); |
294 |
+ |
DynamicRectMatrix<Real> mat(rank, rank); |
295 |
+ |
Real majorCoeff = getCoefficient(rank); |
296 |
+ |
for(int i = 0; i < rank; ++i) { |
297 |
+ |
for(int j = 0; j < rank; ++j) { |
298 |
+ |
if(i - j == 1) { |
299 |
+ |
mat(i, j) = 1; |
300 |
+ |
} else if(j == rank-1) { |
301 |
+ |
mat(i, j) = -1 * getCoefficient(i) / majorCoeff; |
302 |
+ |
} |
303 |
+ |
} |
304 |
+ |
} |
305 |
+ |
return mat; |
306 |
+ |
} |
307 |
+ |
|
308 |
+ |
// Find the Roots of a given polynomial |
309 |
+ |
std::vector<complex<Real> > FindRoots() { |
310 |
+ |
int rank = degree(); |
311 |
+ |
DynamicRectMatrix<Real> companion = CreateCompanion(); |
312 |
+ |
JAMA::Eigenvalue<Real> eig(companion); |
313 |
+ |
DynamicVector<Real> reals, imags; |
314 |
+ |
eig.getRealEigenvalues(reals); |
315 |
+ |
eig.getImagEigenvalues(imags); |
316 |
+ |
|
317 |
+ |
std::vector<complex<Real> > roots; |
318 |
+ |
for (int i = 0; i < rank; i++) { |
319 |
+ |
roots.push_back(complex<Real>(reals(i), imags(i))); |
320 |
+ |
} |
321 |
+ |
|
322 |
+ |
return roots; |
323 |
+ |
} |
324 |
+ |
|
325 |
+ |
std::vector<Real> FindRealRoots() { |
326 |
+ |
|
327 |
+ |
const Real fEpsilon = 1.0e-8; |
328 |
+ |
std::vector<Real> roots; |
329 |
+ |
roots.clear(); |
330 |
+ |
|
331 |
+ |
const int deg = degree(); |
332 |
+ |
|
333 |
+ |
switch (deg) { |
334 |
+ |
case 1: { |
335 |
+ |
Real fC1 = getCoefficient(1); |
336 |
+ |
Real fC0 = getCoefficient(0); |
337 |
+ |
roots.push_back( -fC0 / fC1); |
338 |
+ |
return roots; |
339 |
+ |
} |
340 |
+ |
break; |
341 |
+ |
case 2: { |
342 |
+ |
Real fC2 = getCoefficient(2); |
343 |
+ |
Real fC1 = getCoefficient(1); |
344 |
+ |
Real fC0 = getCoefficient(0); |
345 |
+ |
Real fDiscr = fC1*fC1 - 4.0*fC0*fC2; |
346 |
+ |
if (abs(fDiscr) <= fEpsilon) { |
347 |
+ |
fDiscr = (Real)0.0; |
348 |
+ |
} |
349 |
+ |
|
350 |
+ |
if (fDiscr < (Real)0.0) { // complex roots only |
351 |
+ |
return roots; |
352 |
+ |
} |
353 |
+ |
|
354 |
+ |
Real fTmp = ((Real)0.5)/fC2; |
355 |
+ |
|
356 |
+ |
if (fDiscr > (Real)0.0) { // 2 real roots |
357 |
+ |
fDiscr = sqrt(fDiscr); |
358 |
+ |
roots.push_back(fTmp*(-fC1 - fDiscr)); |
359 |
+ |
roots.push_back(fTmp*(-fC1 + fDiscr)); |
360 |
+ |
} else { |
361 |
+ |
roots.push_back(-fTmp * fC1); // 1 real root |
362 |
+ |
} |
363 |
+ |
} |
364 |
+ |
return roots; |
365 |
+ |
break; |
366 |
+ |
|
367 |
+ |
case 3: { |
368 |
+ |
Real fC3 = getCoefficient(3); |
369 |
+ |
Real fC2 = getCoefficient(2); |
370 |
+ |
Real fC1 = getCoefficient(1); |
371 |
+ |
Real fC0 = getCoefficient(0); |
372 |
+ |
|
373 |
+ |
// make polynomial monic, x^3+c2*x^2+c1*x+c0 |
374 |
+ |
Real fInvC3 = ((Real)1.0)/fC3; |
375 |
+ |
fC0 *= fInvC3; |
376 |
+ |
fC1 *= fInvC3; |
377 |
+ |
fC2 *= fInvC3; |
378 |
+ |
|
379 |
+ |
// convert to y^3+a*y+b = 0 by x = y-c2/3 |
380 |
+ |
const Real fThird = (Real)1.0/(Real)3.0; |
381 |
+ |
const Real fTwentySeventh = (Real)1.0/(Real)27.0; |
382 |
+ |
Real fOffset = fThird*fC2; |
383 |
+ |
Real fA = fC1 - fC2*fOffset; |
384 |
+ |
Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh; |
385 |
+ |
Real fHalfB = ((Real)0.5)*fB; |
386 |
+ |
|
387 |
+ |
Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh; |
388 |
+ |
if (fabs(fDiscr) <= fEpsilon) { |
389 |
+ |
fDiscr = (Real)0.0; |
390 |
+ |
} |
391 |
+ |
|
392 |
+ |
if (fDiscr > (Real)0.0) { // 1 real, 2 complex roots |
393 |
+ |
|
394 |
+ |
fDiscr = sqrt(fDiscr); |
395 |
+ |
Real fTemp = -fHalfB + fDiscr; |
396 |
+ |
Real root; |
397 |
+ |
if (fTemp >= (Real)0.0) { |
398 |
+ |
root = pow(fTemp,fThird); |
399 |
+ |
} else { |
400 |
+ |
root = -pow(-fTemp,fThird); |
401 |
+ |
} |
402 |
+ |
fTemp = -fHalfB - fDiscr; |
403 |
+ |
if ( fTemp >= (Real)0.0 ) { |
404 |
+ |
root += pow(fTemp,fThird); |
405 |
+ |
} else { |
406 |
+ |
root -= pow(-fTemp,fThird); |
407 |
+ |
} |
408 |
+ |
root -= fOffset; |
409 |
+ |
|
410 |
+ |
roots.push_back(root); |
411 |
+ |
} else if (fDiscr < (Real)0.0) { |
412 |
+ |
const Real fSqrt3 = sqrt((Real)3.0); |
413 |
+ |
Real fDist = sqrt(-fThird*fA); |
414 |
+ |
Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB); |
415 |
+ |
Real fCos = cos(fAngle); |
416 |
+ |
Real fSin = sin(fAngle); |
417 |
+ |
roots.push_back(((Real)2.0)*fDist*fCos-fOffset); |
418 |
+ |
roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset); |
419 |
+ |
roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset); |
420 |
+ |
} else { |
421 |
+ |
Real fTemp; |
422 |
+ |
if (fHalfB >= (Real)0.0) { |
423 |
+ |
fTemp = -pow(fHalfB,fThird); |
424 |
+ |
} else { |
425 |
+ |
fTemp = pow(-fHalfB,fThird); |
426 |
+ |
} |
427 |
+ |
roots.push_back(((Real)2.0)*fTemp-fOffset); |
428 |
+ |
roots.push_back(-fTemp-fOffset); |
429 |
+ |
roots.push_back(-fTemp-fOffset); |
430 |
+ |
} |
431 |
+ |
} |
432 |
+ |
return roots; |
433 |
+ |
break; |
434 |
+ |
case 4: { |
435 |
+ |
Real fC4 = getCoefficient(4); |
436 |
+ |
Real fC3 = getCoefficient(3); |
437 |
+ |
Real fC2 = getCoefficient(2); |
438 |
+ |
Real fC1 = getCoefficient(1); |
439 |
+ |
Real fC0 = getCoefficient(0); |
440 |
+ |
|
441 |
+ |
// make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0 |
442 |
+ |
Real fInvC4 = ((Real)1.0)/fC4; |
443 |
+ |
fC0 *= fInvC4; |
444 |
+ |
fC1 *= fInvC4; |
445 |
+ |
fC2 *= fInvC4; |
446 |
+ |
fC3 *= fInvC4; |
447 |
+ |
|
448 |
+ |
// reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0 |
449 |
+ |
Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1; |
450 |
+ |
Real fR1 = fC3*fC1 - ((Real)4.0)*fC0; |
451 |
+ |
Real fR2 = -fC2; |
452 |
+ |
Polynomial<Real> tempCubic; |
453 |
+ |
tempCubic.setCoefficient(0, fR0); |
454 |
+ |
tempCubic.setCoefficient(1, fR1); |
455 |
+ |
tempCubic.setCoefficient(2, fR2); |
456 |
+ |
tempCubic.setCoefficient(3, 1.0); |
457 |
+ |
std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always |
458 |
+ |
// produces |
459 |
+ |
// at |
460 |
+ |
// least |
461 |
+ |
// one |
462 |
+ |
// root |
463 |
+ |
Real fY = cubeRoots[0]; |
464 |
+ |
|
465 |
+ |
Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY; |
466 |
+ |
if (fabs(fDiscr) <= fEpsilon) { |
467 |
+ |
fDiscr = (Real)0.0; |
468 |
+ |
} |
469 |
|
|
470 |
+ |
if (fDiscr > (Real)0.0) { |
471 |
+ |
Real fR = sqrt(fDiscr); |
472 |
+ |
Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2; |
473 |
+ |
Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) / |
474 |
+ |
(((Real)4.0)*fR); |
475 |
+ |
|
476 |
+ |
Real fTplus = fT1+fT2; |
477 |
+ |
Real fTminus = fT1-fT2; |
478 |
+ |
if (fabs(fTplus) <= fEpsilon) { |
479 |
+ |
fTplus = (Real)0.0; |
480 |
+ |
} |
481 |
+ |
if (fabs(fTminus) <= fEpsilon) { |
482 |
+ |
fTminus = (Real)0.0; |
483 |
+ |
} |
484 |
+ |
|
485 |
+ |
if (fTplus >= (Real)0.0) { |
486 |
+ |
Real fD = sqrt(fTplus); |
487 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD)); |
488 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD)); |
489 |
+ |
} |
490 |
+ |
if (fTminus >= (Real)0.0) { |
491 |
+ |
Real fE = sqrt(fTminus); |
492 |
+ |
roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR)); |
493 |
+ |
roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR)); |
494 |
+ |
} |
495 |
+ |
} else if (fDiscr < (Real)0.0) { |
496 |
+ |
//roots.clear(); |
497 |
+ |
} else { |
498 |
+ |
Real fT2 = fY*fY-((Real)4.0)*fC0; |
499 |
+ |
if (fT2 >= -fEpsilon) { |
500 |
+ |
if (fT2 < (Real)0.0) { // round to zero |
501 |
+ |
fT2 = (Real)0.0; |
502 |
+ |
} |
503 |
+ |
fT2 = ((Real)2.0)*sqrt(fT2); |
504 |
+ |
Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2; |
505 |
+ |
if (fT1+fT2 >= fEpsilon) { |
506 |
+ |
Real fD = sqrt(fT1+fT2); |
507 |
+ |
roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD); |
508 |
+ |
roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD); |
509 |
+ |
} |
510 |
+ |
if (fT1-fT2 >= fEpsilon) { |
511 |
+ |
Real fE = sqrt(fT1-fT2); |
512 |
+ |
roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE); |
513 |
+ |
roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE); |
514 |
+ |
} |
515 |
+ |
} |
516 |
+ |
} |
517 |
+ |
} |
518 |
+ |
return roots; |
519 |
+ |
break; |
520 |
+ |
default: { |
521 |
+ |
DynamicRectMatrix<Real> companion = CreateCompanion(); |
522 |
+ |
JAMA::Eigenvalue<Real> eig(companion); |
523 |
+ |
DynamicVector<Real> reals, imags; |
524 |
+ |
eig.getRealEigenvalues(reals); |
525 |
+ |
eig.getImagEigenvalues(imags); |
526 |
+ |
|
527 |
+ |
for (int i = 0; i < deg; i++) { |
528 |
+ |
if (fabs(imags(i)) < fEpsilon) |
529 |
+ |
roots.push_back(reals(i)); |
530 |
+ |
} |
531 |
+ |
} |
532 |
+ |
return roots; |
533 |
+ |
break; |
534 |
+ |
} |
535 |
+ |
|
536 |
+ |
return roots; // should be empty if you got here |
537 |
+ |
} |
538 |
+ |
|
539 |
|
private: |
540 |
|
|
541 |
|
PolynomialPairMap polyPairMap_; |
542 |
|
}; |
543 |
|
|
544 |
< |
|
544 |
> |
|
545 |
|
/** |
546 |
|
* Generates and returns the product of two given Polynomials. |
547 |
|
* @return A Polynomial containing the product of the two given Polynomial parameters |
548 |
|
*/ |
549 |
< |
template<typename ElemType> |
550 |
< |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
551 |
< |
typename Polynomial<ElemType>::const_iterator i; |
552 |
< |
typename Polynomial<ElemType>::const_iterator j; |
553 |
< |
Polynomial<ElemType> p; |
549 |
> |
template<typename Real> |
550 |
> |
Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
551 |
> |
typename Polynomial<Real>::const_iterator i; |
552 |
> |
typename Polynomial<Real>::const_iterator j; |
553 |
> |
Polynomial<Real> p; |
554 |
|
|
555 |
|
for (i = p1.begin(); i !=p1.end(); ++i) { |
556 |
|
for (j = p2.begin(); j !=p2.end(); ++j) { |
561 |
|
return p; |
562 |
|
} |
563 |
|
|
564 |
< |
template<typename ElemType> |
565 |
< |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { |
566 |
< |
typename Polynomial<ElemType>::const_iterator i; |
567 |
< |
Polynomial<ElemType> result; |
564 |
> |
template<typename Real> |
565 |
> |
Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) { |
566 |
> |
typename Polynomial<Real>::const_iterator i; |
567 |
> |
Polynomial<Real> result; |
568 |
|
|
569 |
|
for (i = p.begin(); i !=p.end(); ++i) { |
570 |
< |
result.addCoefficient( i->first , i->second * v); |
570 |
> |
result.setCoefficient( i->first , i->second * v); |
571 |
|
} |
572 |
|
|
573 |
|
return result; |
574 |
|
} |
575 |
|
|
576 |
< |
template<typename ElemType> |
577 |
< |
Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { |
578 |
< |
typename Polynomial<ElemType>::const_iterator i; |
579 |
< |
Polynomial<ElemType> result; |
576 |
> |
template<typename Real> |
577 |
> |
Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) { |
578 |
> |
typename Polynomial<Real>::const_iterator i; |
579 |
> |
Polynomial<Real> result; |
580 |
|
|
581 |
|
for (i = p.begin(); i !=p.end(); ++i) { |
582 |
< |
result.addCoefficient( i->first , i->second * v); |
582 |
> |
result.setCoefficient( i->first , i->second * v); |
583 |
|
} |
584 |
|
|
585 |
|
return result; |
590 |
|
* @param p1 the first polynomial |
591 |
|
* @param p2 the second polynomial |
592 |
|
*/ |
593 |
< |
template<typename ElemType> |
594 |
< |
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
595 |
< |
Polynomial<ElemType> p(p1); |
593 |
> |
template<typename Real> |
594 |
> |
Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
595 |
> |
Polynomial<Real> p(p1); |
596 |
|
|
597 |
< |
typename Polynomial<ElemType>::const_iterator i; |
597 |
> |
typename Polynomial<Real>::const_iterator i; |
598 |
|
|
599 |
|
for (i = p2.begin(); i != p2.end(); ++i) { |
600 |
|
p.addCoefficient(i->first, i->second); |
610 |
|
* @param p1 the first polynomial |
611 |
|
* @param p2 the second polynomial |
612 |
|
*/ |
613 |
< |
template<typename ElemType> |
614 |
< |
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
615 |
< |
Polynomial<ElemType> p(p1); |
613 |
> |
template<typename Real> |
614 |
> |
Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
615 |
> |
Polynomial<Real> p(p1); |
616 |
|
|
617 |
< |
typename Polynomial<ElemType>::const_iterator i; |
617 |
> |
typename Polynomial<Real>::const_iterator i; |
618 |
|
|
619 |
|
for (i = p2.begin(); i != p2.end(); ++i) { |
620 |
|
p.addCoefficient(i->first, -i->second); |
625 |
|
} |
626 |
|
|
627 |
|
/** |
628 |
+ |
* Returns the first derivative of this polynomial. |
629 |
+ |
* @return the first derivative of this polynomial |
630 |
+ |
*/ |
631 |
+ |
template<typename Real> |
632 |
+ |
Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { |
633 |
+ |
Polynomial<Real> p(); |
634 |
+ |
|
635 |
+ |
typename Polynomial<Real>::const_iterator i; |
636 |
+ |
int exponent; |
637 |
+ |
Real coefficient; |
638 |
+ |
|
639 |
+ |
for (i = p1.begin(); i != p1.end(); ++i) { |
640 |
+ |
exponent = i->first; |
641 |
+ |
coefficient = i->second; |
642 |
+ |
p.setCoefficient(exponent-1, coefficient * exponent); |
643 |
+ |
} |
644 |
+ |
|
645 |
+ |
return p; |
646 |
+ |
} |
647 |
+ |
|
648 |
+ |
/** |
649 |
|
* Tests if two polynomial have the same exponents |
650 |
< |
* @return true if these all of the exponents in these Polynomial are identical |
650 |
> |
* @return true if all of the exponents in these Polynomial are identical |
651 |
|
* @param p1 the first polynomial |
652 |
|
* @param p2 the second polynomial |
653 |
|
* @note this function does not compare the coefficient |
654 |
|
*/ |
655 |
< |
template<typename ElemType> |
656 |
< |
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
655 |
> |
template<typename Real> |
656 |
> |
bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { |
657 |
|
|
658 |
< |
typename Polynomial<ElemType>::const_iterator i; |
659 |
< |
typename Polynomial<ElemType>::const_iterator j; |
658 |
> |
typename Polynomial<Real>::const_iterator i; |
659 |
> |
typename Polynomial<Real>::const_iterator j; |
660 |
|
|
661 |
|
if (p1.size() != p2.size() ) { |
662 |
|
return false; |
671 |
|
return true; |
672 |
|
} |
673 |
|
|
337 |
– |
typedef Polynomial<double> DoublePolynomial; |
674 |
|
|
675 |
< |
} //end namespace oopse |
675 |
> |
|
676 |
> |
typedef Polynomial<RealType> DoublePolynomial; |
677 |
> |
|
678 |
> |
} //end namespace OpenMD |
679 |
|
#endif //MATH_POLYNOMIAL_HPP |