ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Polynomial.hpp
(Generate patch)

Comparing:
trunk/src/math/Polynomial.hpp (file contents), Revision 876 by tim, Mon Jan 30 22:25:27 2006 UTC vs.
branches/development/src/math/Polynomial.hpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include <list>
54   #include <map>
55   #include <utility>
56 + #include <complex>
57 + #include "config.h"
58 + #include "math/Eigenvalue.hpp"
59  
60 < namespace oopse {
60 > namespace OpenMD {
61 >  
62 >  template<typename Real> Real fastpow(Real x, int N) {
63 >    Real result(1); //or 1.0?
64  
59  template<typename ElemType> ElemType pow(ElemType x, int N) {
60    ElemType result(1);
61
65      for (int i = 0; i < N; ++i) {
66        result *= x;
67      }
# Line 70 | Line 73 | namespace oopse {
73     * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
74     * A generic Polynomial class
75     */
76 <  template<typename ElemType>
76 >  template<typename Real>
77    class Polynomial {
78  
79    public:
80 <    typedef Polynomial<ElemType> PolynomialType;    
80 >    typedef Polynomial<Real> PolynomialType;    
81      typedef int ExponentType;
82 <    typedef ElemType CoefficientType;
82 >    typedef Real CoefficientType;
83      typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
84      typedef typename PolynomialPairMap::iterator iterator;
85      typedef typename PolynomialPairMap::const_iterator const_iterator;
86  
87      Polynomial() {}
88 <    Polynomial(ElemType v) {setCoefficient(0, v);}
88 >    Polynomial(Real v) {setCoefficient(0, v);}
89      /**
90       * Calculates the value of this Polynomial evaluated at the given x value.
91 <     * @return The value of this Polynomial evaluates at the given x value
92 <     * @param x the value of the independent variable for this Polynomial function
91 >     * @return The value of this Polynomial evaluates at the given x value  
92 >     * @param x the value of the independent variable for this
93 >     * Polynomial function
94       */
95 <    ElemType evaluate(const ElemType& x) {
96 <      ElemType result = ElemType();
95 >    Real evaluate(const Real& x) {
96 >      Real result = Real();
97        ExponentType exponent;
98        CoefficientType coefficient;
99              
100        for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
101          exponent = i->first;
102          coefficient = i->second;
103 <        result  += pow(x, exponent) * coefficient;
103 >        result  += fastpow(x, exponent) * coefficient;
104        }
105  
106        return result;
# Line 107 | Line 111 | namespace oopse {
111       * @return the first derivative of this polynomial
112       * @param x
113       */
114 <    ElemType evaluateDerivative(const ElemType& x) {
115 <      ElemType result = ElemType();
114 >    Real evaluateDerivative(const Real& x) {
115 >      Real result = Real();
116        ExponentType exponent;
117        CoefficientType coefficient;
118              
119        for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
120          exponent = i->first;
121          coefficient = i->second;
122 <        result  += pow(x, exponent - 1) * coefficient * exponent;
122 >        result  += fastpow(x, exponent - 1) * coefficient * exponent;
123        }
124  
125        return result;
126      }
127  
128 +
129      /**
130 <     * Set the coefficent of the specified exponent, if the coefficient is already there, it
131 <     * will be overwritten.
130 >     * Set the coefficent of the specified exponent, if the
131 >     * coefficient is already there, it will be overwritten.
132       * @param exponent exponent of a term in this Polynomial
133       * @param coefficient multiplier of a term in this Polynomial
134 <     */
135 <        
136 <    void setCoefficient(int exponent, const ElemType& coefficient) {
132 <      polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient));
134 >     */        
135 >    void setCoefficient(int exponent, const Real& coefficient) {
136 >      polyPairMap_[exponent] = coefficient;
137      }
138 <
138 >    
139      /**
140 <     * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the
141 <     * new coefficient to the old one, otherwise,  just call setCoefficent
140 >     * Set the coefficent of the specified exponent. If the
141 >     * coefficient is already there, just add the new coefficient to
142 >     * the old one, otherwise, just call setCoefficent
143       * @param exponent exponent of a term in this Polynomial
144       * @param coefficient multiplier of a term in this Polynomial
145 <     */
146 <        
142 <    void addCoefficient(int exponent, const ElemType& coefficient) {
145 >     */        
146 >    void addCoefficient(int exponent, const Real& coefficient) {
147        iterator i = polyPairMap_.find(exponent);
148  
149        if (i != end()) {
# Line 149 | Line 153 | namespace oopse {
153        }
154      }
155  
152
156      /**
157 <     * Returns the coefficient associated with the given power for this Polynomial.
158 <     * @return the coefficient associated with the given power for this Polynomial
157 >     * Returns the coefficient associated with the given power for
158 >     * this Polynomial.
159 >     * @return the coefficient associated with the given power for
160 >     * this Polynomial
161       * @exponent exponent of any term in this Polynomial
162       */
163 <    ElemType getCoefficient(ExponentType exponent) {
163 >    Real getCoefficient(ExponentType exponent) {
164        iterator i = polyPairMap_.find(exponent);
165  
166        if (i != end()) {
167          return i->second;
168        } else {
169 <        return ElemType(0);
169 >        return Real(0);
170        }
171      }
172  
# Line 189 | Line 194 | namespace oopse {
194        return polyPairMap_.size();
195      }
196  
197 <    PolynomialType& operator += (const PolynomialType& p) {
198 <        typename Polynomial<ElemType>::const_iterator i;
197 >    int degree() {
198 >      int deg = 0;
199 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
200 >        if (i->first > deg)
201 >          deg = i->first;
202 >      }
203 >      return deg;
204 >    }
205  
206 <        for (i =  p.begin(); i  != p.end(); ++i) {
196 <          this->addCoefficient(i->first, i->second);
197 <        }
206 >    PolynomialType& operator = (const PolynomialType& p) {
207  
208 <        return *this;        
209 <    }
208 >      if (this != &p)  // protect against invalid self-assignment
209 >        {
210 >          typename Polynomial<Real>::const_iterator i;
211  
212 <    PolynomialType& operator -= (const PolynomialType& p) {
213 <        typename Polynomial<ElemType>::const_iterator i;
214 <        for (i =  p.begin(); i  != p.end(); ++i) {
215 <          this->addCoefficient(i->first, -i->second);
216 <        }        
212 >          polyPairMap_.clear();  // clear out the old map
213 >      
214 >          for (i =  p.begin(); i != p.end(); ++i) {
215 >            this->setCoefficient(i->first, i->second);
216 >          }
217 >        }
218 >      // by convention, always return *this
219 >      return *this;
220      }
221  
222 <    PolynomialType& operator *= (const PolynomialType& p) {
223 <    typename Polynomial<ElemType>::const_iterator i;
224 <    typename Polynomial<ElemType>::const_iterator j;
225 <    
226 <    for (i = this->begin(); i !=this->end(); ++i) {
214 <      for (j = p.begin(); j !=p.end(); ++j) {
215 <        this->addCoefficient( i->first + j->first, i->second * j->second);
222 >    PolynomialType& operator += (const PolynomialType& p) {
223 >      typename Polynomial<Real>::const_iterator i;
224 >
225 >      for (i =  p.begin(); i  != p.end(); ++i) {
226 >        this->addCoefficient(i->first, i->second);
227        }
228 +
229 +      return *this;        
230      }
231  
232 <    return *this;
232 >    PolynomialType& operator -= (const PolynomialType& p) {
233 >      typename Polynomial<Real>::const_iterator i;
234 >      for (i =  p.begin(); i  != p.end(); ++i) {
235 >        this->addCoefficient(i->first, -i->second);
236 >      }        
237 >      return *this;
238      }
239 +    
240 +    PolynomialType& operator *= (const PolynomialType& p) {
241 +      typename Polynomial<Real>::const_iterator i;
242 +      typename Polynomial<Real>::const_iterator j;
243 +      Polynomial<Real> p2(*this);
244 +      
245 +      polyPairMap_.clear();  // clear out old map
246 +      for (i = p2.begin(); i !=p2.end(); ++i) {
247 +        for (j = p.begin(); j !=p.end(); ++j) {
248 +          this->addCoefficient( i->first + j->first, i->second * j->second);
249 +        }
250 +      }
251 +      return *this;
252 +    }
253  
254 +    //PolynomialType& operator *= (const Real v)
255 +    PolynomialType& operator *= (const Real v) {
256 +      typename Polynomial<Real>::const_iterator i;
257 +      //Polynomial<Real> result;
258 +      
259 +      for (i = this->begin(); i != this->end(); ++i) {
260 +        this->setCoefficient( i->first, i->second*v);
261 +      }
262 +      
263 +      return *this;
264 +    }
265 +
266 +    PolynomialType& operator += (const Real v) {    
267 +      this->addCoefficient( 0, v);
268 +      return *this;
269 +    }
270 +
271 +    /**
272 +     * Returns the first derivative of this polynomial.
273 +     * @return the first derivative of this polynomial
274 +     */
275 +    PolynomialType & getDerivative() {
276 +      Polynomial<Real> p();
277 +      
278 +      typename Polynomial<Real>::const_iterator i;
279 +      ExponentType exponent;
280 +      CoefficientType coefficient;
281 +      
282 +      for (i =  this->begin(); i  != this->end(); ++i) {
283 +        exponent = i->first;
284 +        coefficient = i->second;
285 +        p.setCoefficient(exponent-1, coefficient * exponent);
286 +      }
287 +    
288 +      return p;
289 +    }
290 +
291 +    // Creates the Companion matrix for a given polynomial
292 +    DynamicRectMatrix<Real> CreateCompanion() {
293 +      int rank = degree();
294 +      DynamicRectMatrix<Real> mat(rank, rank);
295 +      Real majorCoeff = getCoefficient(rank);
296 +      for(int i = 0; i < rank; ++i) {
297 +        for(int j = 0; j < rank; ++j) {
298 +          if(i - j == 1) {
299 +            mat(i, j) = 1;
300 +          } else if(j == rank-1) {
301 +            mat(i, j) = -1 * getCoefficient(i) / majorCoeff;
302 +          }
303 +        }
304 +      }
305 +      return mat;
306 +    }
307 +    
308 +    // Find the Roots of a given polynomial
309 +    std::vector<complex<Real> > FindRoots() {
310 +      int rank = degree();
311 +      DynamicRectMatrix<Real> companion = CreateCompanion();
312 +      JAMA::Eigenvalue<Real> eig(companion);
313 +      DynamicVector<Real> reals, imags;
314 +      eig.getRealEigenvalues(reals);
315 +      eig.getImagEigenvalues(imags);
316 +      
317 +      std::vector<complex<Real> > roots;
318 +      for (int i = 0; i < rank; i++) {
319 +        roots.push_back(complex<Real>(reals(i), imags(i)));
320 +      }
321 +
322 +      return roots;
323 +    }
324 +
325 +    std::vector<Real> FindRealRoots() {
326 +      
327 +      const Real fEpsilon = 1.0e-8;
328 +      std::vector<Real> roots;
329 +      roots.clear();
330 +      
331 +      const int deg = degree();
332 +      
333 +      switch (deg) {
334 +      case 1: {
335 +        Real fC1 = getCoefficient(1);
336 +        Real fC0 = getCoefficient(0);
337 +        roots.push_back( -fC0 / fC1);
338 +        return roots;
339 +      }
340 +        break;      
341 +      case 2: {
342 +        Real fC2 = getCoefficient(2);
343 +        Real fC1 = getCoefficient(1);
344 +        Real fC0 = getCoefficient(0);
345 +        Real fDiscr = fC1*fC1 - 4.0*fC0*fC2;
346 +        if (abs(fDiscr) <= fEpsilon) {
347 +          fDiscr = (Real)0.0;
348 +        }
349 +      
350 +        if (fDiscr < (Real)0.0) {  // complex roots only
351 +          return roots;
352 +        }
353 +      
354 +        Real fTmp = ((Real)0.5)/fC2;
355 +      
356 +        if (fDiscr > (Real)0.0) { // 2 real roots
357 +          fDiscr = sqrt(fDiscr);
358 +          roots.push_back(fTmp*(-fC1 - fDiscr));
359 +          roots.push_back(fTmp*(-fC1 + fDiscr));
360 +        } else {
361 +          roots.push_back(-fTmp * fC1);  // 1 real root
362 +        }
363 +      }
364 +        return roots;
365 +        break;
366 +      
367 +      case 3: {
368 +        Real fC3 = getCoefficient(3);
369 +        Real fC2 = getCoefficient(2);
370 +        Real fC1 = getCoefficient(1);
371 +        Real fC0 = getCoefficient(0);
372 +      
373 +        // make polynomial monic, x^3+c2*x^2+c1*x+c0
374 +        Real fInvC3 = ((Real)1.0)/fC3;
375 +        fC0 *= fInvC3;
376 +        fC1 *= fInvC3;
377 +        fC2 *= fInvC3;
378 +      
379 +        // convert to y^3+a*y+b = 0 by x = y-c2/3
380 +        const Real fThird = (Real)1.0/(Real)3.0;
381 +        const Real fTwentySeventh = (Real)1.0/(Real)27.0;
382 +        Real fOffset = fThird*fC2;
383 +        Real fA = fC1 - fC2*fOffset;
384 +        Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh;
385 +        Real fHalfB = ((Real)0.5)*fB;
386 +      
387 +        Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh;
388 +        if (fabs(fDiscr) <= fEpsilon) {
389 +          fDiscr = (Real)0.0;
390 +        }
391 +      
392 +        if (fDiscr > (Real)0.0) {  // 1 real, 2 complex roots
393 +        
394 +          fDiscr = sqrt(fDiscr);
395 +          Real fTemp = -fHalfB + fDiscr;
396 +          Real root;
397 +          if (fTemp >= (Real)0.0) {
398 +            root = pow(fTemp,fThird);
399 +          } else {
400 +            root = -pow(-fTemp,fThird);
401 +          }
402 +          fTemp = -fHalfB - fDiscr;
403 +          if ( fTemp >= (Real)0.0 ) {
404 +            root += pow(fTemp,fThird);          
405 +          } else {
406 +            root -= pow(-fTemp,fThird);
407 +          }
408 +          root -= fOffset;
409 +        
410 +          roots.push_back(root);
411 +        } else if (fDiscr < (Real)0.0) {
412 +          const Real fSqrt3 = sqrt((Real)3.0);
413 +          Real fDist = sqrt(-fThird*fA);
414 +          Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB);
415 +          Real fCos = cos(fAngle);
416 +          Real fSin = sin(fAngle);
417 +          roots.push_back(((Real)2.0)*fDist*fCos-fOffset);
418 +          roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset);
419 +          roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset);
420 +        } else {
421 +          Real fTemp;
422 +          if (fHalfB >= (Real)0.0) {
423 +            fTemp = -pow(fHalfB,fThird);
424 +          } else {
425 +            fTemp = pow(-fHalfB,fThird);
426 +          }
427 +          roots.push_back(((Real)2.0)*fTemp-fOffset);
428 +          roots.push_back(-fTemp-fOffset);
429 +          roots.push_back(-fTemp-fOffset);
430 +        }
431 +      }
432 +        return roots;
433 +        break;
434 +      case 4: {
435 +        Real fC4 = getCoefficient(4);
436 +        Real fC3 = getCoefficient(3);
437 +        Real fC2 = getCoefficient(2);
438 +        Real fC1 = getCoefficient(1);
439 +        Real fC0 = getCoefficient(0);
440 +      
441 +        // make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0
442 +        Real fInvC4 = ((Real)1.0)/fC4;
443 +        fC0 *= fInvC4;
444 +        fC1 *= fInvC4;
445 +        fC2 *= fInvC4;
446 +        fC3 *= fInvC4;
447 +  
448 +        // reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0
449 +        Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1;
450 +        Real fR1 = fC3*fC1 - ((Real)4.0)*fC0;
451 +        Real fR2 = -fC2;
452 +        Polynomial<Real> tempCubic;
453 +        tempCubic.setCoefficient(0, fR0);
454 +        tempCubic.setCoefficient(1, fR1);
455 +        tempCubic.setCoefficient(2, fR2);
456 +        tempCubic.setCoefficient(3, 1.0);
457 +        std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always
458 +        // produces
459 +        // at
460 +        // least
461 +        // one
462 +        // root
463 +        Real fY = cubeRoots[0];
464 +      
465 +        Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY;
466 +        if (fabs(fDiscr) <= fEpsilon) {
467 +          fDiscr = (Real)0.0;
468 +        }
469    
470 +        if (fDiscr > (Real)0.0) {
471 +          Real fR = sqrt(fDiscr);
472 +          Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2;
473 +          Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) /
474 +            (((Real)4.0)*fR);
475 +      
476 +          Real fTplus = fT1+fT2;
477 +          Real fTminus = fT1-fT2;
478 +          if (fabs(fTplus) <= fEpsilon) {
479 +            fTplus = (Real)0.0;
480 +          }
481 +          if (fabs(fTminus) <= fEpsilon) {
482 +            fTminus = (Real)0.0;
483 +          }
484 +      
485 +          if (fTplus >= (Real)0.0) {
486 +            Real fD = sqrt(fTplus);
487 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD));
488 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD));
489 +          }
490 +          if (fTminus >= (Real)0.0) {
491 +            Real fE = sqrt(fTminus);
492 +            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR));
493 +            roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR));
494 +          }
495 +        } else if (fDiscr < (Real)0.0) {
496 +          //roots.clear();
497 +        } else {        
498 +          Real fT2 = fY*fY-((Real)4.0)*fC0;
499 +          if (fT2 >= -fEpsilon) {
500 +            if (fT2 < (Real)0.0) { // round to zero
501 +              fT2 = (Real)0.0;
502 +            }
503 +            fT2 = ((Real)2.0)*sqrt(fT2);
504 +            Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2;
505 +            if (fT1+fT2 >= fEpsilon) {
506 +              Real fD = sqrt(fT1+fT2);
507 +              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD);
508 +              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD);
509 +            }
510 +            if (fT1-fT2 >= fEpsilon) {
511 +              Real fE = sqrt(fT1-fT2);
512 +              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE);
513 +              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE);
514 +            }
515 +          }
516 +        }
517 +      }
518 +        return roots;
519 +        break;
520 +      default: {
521 +        DynamicRectMatrix<Real> companion = CreateCompanion();
522 +        JAMA::Eigenvalue<Real> eig(companion);
523 +        DynamicVector<Real> reals, imags;
524 +        eig.getRealEigenvalues(reals);
525 +        eig.getImagEigenvalues(imags);
526 +      
527 +        for (int i = 0; i < deg; i++) {
528 +          if (fabs(imags(i)) < fEpsilon)
529 +            roots.push_back(reals(i));        
530 +        }      
531 +      }
532 +        return roots;
533 +        break;
534 +      }
535 +
536 +      return roots; // should be empty if you got here
537 +    }
538 +  
539    private:
540          
541      PolynomialPairMap polyPairMap_;
542    };
543  
544 <
544 >  
545    /**
546     * Generates and returns the product of two given Polynomials.
547     * @return A Polynomial containing the product of the two given Polynomial parameters
548     */
549 <  template<typename ElemType>
550 <  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
551 <    typename Polynomial<ElemType>::const_iterator i;
552 <    typename Polynomial<ElemType>::const_iterator j;
553 <    Polynomial<ElemType> p;
549 >  template<typename Real>
550 >  Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
551 >    typename Polynomial<Real>::const_iterator i;
552 >    typename Polynomial<Real>::const_iterator j;
553 >    Polynomial<Real> p;
554      
555      for (i = p1.begin(); i !=p1.end(); ++i) {
556        for (j = p2.begin(); j !=p2.end(); ++j) {
# Line 245 | Line 561 | namespace oopse {
561      return p;
562    }
563  
564 <  template<typename ElemType>
565 <  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
566 <    typename Polynomial<ElemType>::const_iterator i;
567 <    Polynomial<ElemType> result;
564 >  template<typename Real>
565 >  Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) {
566 >    typename Polynomial<Real>::const_iterator i;
567 >    Polynomial<Real> result;
568      
569      for (i = p.begin(); i !=p.end(); ++i) {
570 <        result.addCoefficient( i->first , i->second * v);
570 >        result.setCoefficient( i->first , i->second * v);
571      }
572  
573      return result;
574    }
575  
576 <  template<typename ElemType>
577 <  Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
578 <    typename Polynomial<ElemType>::const_iterator i;
579 <    Polynomial<ElemType> result;
576 >  template<typename Real>
577 >  Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) {
578 >    typename Polynomial<Real>::const_iterator i;
579 >    Polynomial<Real> result;
580      
581      for (i = p.begin(); i !=p.end(); ++i) {
582 <        result.addCoefficient( i->first , i->second * v);
582 >        result.setCoefficient( i->first , i->second * v);
583      }
584  
585      return result;
# Line 274 | Line 590 | namespace oopse {
590     * @param p1 the first polynomial
591     * @param p2 the second polynomial
592     */
593 <  template<typename ElemType>
594 <  Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
595 <    Polynomial<ElemType> p(p1);
593 >  template<typename Real>
594 >  Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
595 >    Polynomial<Real> p(p1);
596  
597 <    typename Polynomial<ElemType>::const_iterator i;
597 >    typename Polynomial<Real>::const_iterator i;
598  
599      for (i =  p2.begin(); i  != p2.end(); ++i) {
600        p.addCoefficient(i->first, i->second);
# Line 294 | Line 610 | namespace oopse {
610     * @param p1 the first polynomial
611     * @param p2 the second polynomial
612     */
613 <  template<typename ElemType>
614 <  Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
615 <    Polynomial<ElemType> p(p1);
613 >  template<typename Real>
614 >  Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
615 >    Polynomial<Real> p(p1);
616  
617 <    typename Polynomial<ElemType>::const_iterator i;
617 >    typename Polynomial<Real>::const_iterator i;
618  
619      for (i =  p2.begin(); i  != p2.end(); ++i) {
620        p.addCoefficient(i->first, -i->second);
# Line 309 | Line 625 | namespace oopse {
625    }
626  
627    /**
628 +   * Returns the first derivative of this polynomial.
629 +   * @return the first derivative of this polynomial
630 +   */
631 +  template<typename Real>
632 +  Polynomial<Real> getDerivative(const Polynomial<Real>& p1) {
633 +    Polynomial<Real> p();
634 +    
635 +    typename Polynomial<Real>::const_iterator i;
636 +    int exponent;
637 +    Real coefficient;
638 +    
639 +    for (i =  p1.begin(); i  != p1.end(); ++i) {
640 +      exponent = i->first;
641 +      coefficient = i->second;
642 +      p.setCoefficient(exponent-1, coefficient * exponent);
643 +    }
644 +    
645 +    return p;
646 +  }
647 +
648 +  /**
649     * Tests if two polynomial have the same exponents
650 <   * @return true if these all of the exponents in these Polynomial are identical
650 >   * @return true if all of the exponents in these Polynomial are identical
651     * @param p1 the first polynomial
652     * @param p2 the second polynomial
653     * @note this function does not compare the coefficient
654     */
655 <  template<typename ElemType>
656 <  bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
655 >  template<typename Real>
656 >  bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
657  
658 <    typename Polynomial<ElemType>::const_iterator i;
659 <    typename Polynomial<ElemType>::const_iterator j;
658 >    typename Polynomial<Real>::const_iterator i;
659 >    typename Polynomial<Real>::const_iterator j;
660  
661      if (p1.size() != p2.size() ) {
662        return false;
# Line 334 | Line 671 | namespace oopse {
671      return true;
672    }
673  
337  typedef Polynomial<double> DoublePolynomial;
674  
675 < } //end namespace oopse
675 >
676 >  typedef Polynomial<RealType> DoublePolynomial;
677 >
678 > } //end namespace OpenMD
679   #endif //MATH_POLYNOMIAL_HPP

Comparing:
trunk/src/math/Polynomial.hpp (property svn:keywords), Revision 876 by tim, Mon Jan 30 22:25:27 2006 UTC vs.
branches/development/src/math/Polynomial.hpp (property svn:keywords), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines