35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
273 |
|
* Returns the first derivative of this polynomial. |
274 |
|
* @return the first derivative of this polynomial |
275 |
|
*/ |
276 |
< |
PolynomialType & getDerivative() { |
277 |
< |
Polynomial<Real> p; |
276 |
> |
PolynomialType* getDerivative() { |
277 |
> |
Polynomial<Real>* p = new Polynomial<Real>(); |
278 |
|
|
279 |
|
typename Polynomial<Real>::const_iterator i; |
280 |
|
ExponentType exponent; |
283 |
|
for (i = this->begin(); i != this->end(); ++i) { |
284 |
|
exponent = i->first; |
285 |
|
coefficient = i->second; |
286 |
< |
p.setCoefficient(exponent-1, coefficient * exponent); |
286 |
> |
p->setCoefficient(exponent-1, coefficient * exponent); |
287 |
|
} |
288 |
|
|
289 |
|
return p; |
338 |
|
roots.push_back( -fC0 / fC1); |
339 |
|
return roots; |
340 |
|
} |
341 |
– |
break; |
341 |
|
case 2: { |
342 |
|
Real fC2 = getCoefficient(2); |
343 |
|
Real fC1 = getCoefficient(1); |
346 |
|
if (abs(fDiscr) <= fEpsilon) { |
347 |
|
fDiscr = (Real)0.0; |
348 |
|
} |
349 |
< |
|
349 |
> |
|
350 |
|
if (fDiscr < (Real)0.0) { // complex roots only |
351 |
|
return roots; |
352 |
|
} |
353 |
< |
|
353 |
> |
|
354 |
|
Real fTmp = ((Real)0.5)/fC2; |
355 |
< |
|
355 |
> |
|
356 |
|
if (fDiscr > (Real)0.0) { // 2 real roots |
357 |
|
fDiscr = sqrt(fDiscr); |
358 |
|
roots.push_back(fTmp*(-fC1 - fDiscr)); |
361 |
|
roots.push_back(-fTmp * fC1); // 1 real root |
362 |
|
} |
363 |
|
} |
364 |
< |
return roots; |
366 |
< |
break; |
367 |
< |
|
364 |
> |
return roots; |
365 |
|
case 3: { |
366 |
|
Real fC3 = getCoefficient(3); |
367 |
|
Real fC2 = getCoefficient(2); |
428 |
|
} |
429 |
|
} |
430 |
|
return roots; |
434 |
– |
break; |
431 |
|
case 4: { |
432 |
|
Real fC4 = getCoefficient(4); |
433 |
|
Real fC3 = getCoefficient(3); |
513 |
|
} |
514 |
|
} |
515 |
|
return roots; |
520 |
– |
break; |
516 |
|
default: { |
517 |
|
DynamicRectMatrix<Real> companion = CreateCompanion(); |
518 |
|
JAMA::Eigenvalue<Real> eig(companion); |
526 |
|
} |
527 |
|
} |
528 |
|
return roots; |
534 |
– |
break; |
529 |
|
} |
536 |
– |
|
537 |
– |
return roots; // should be empty if you got here |
530 |
|
} |
531 |
< |
|
531 |
> |
|
532 |
|
private: |
533 |
|
|
534 |
|
PolynomialPairMap polyPairMap_; |
622 |
|
* @return the first derivative of this polynomial |
623 |
|
*/ |
624 |
|
template<typename Real> |
625 |
< |
Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { |
626 |
< |
Polynomial<Real> p; |
625 |
> |
Polynomial<Real> * getDerivative(const Polynomial<Real>& p1) { |
626 |
> |
Polynomial<Real> * p = new Polynomial<Real>(); |
627 |
|
|
628 |
|
typename Polynomial<Real>::const_iterator i; |
629 |
|
int exponent; |
632 |
|
for (i = p1.begin(); i != p1.end(); ++i) { |
633 |
|
exponent = i->first; |
634 |
|
coefficient = i->second; |
635 |
< |
p.setCoefficient(exponent-1, coefficient * exponent); |
635 |
> |
p->setCoefficient(exponent-1, coefficient * exponent); |
636 |
|
} |
637 |
|
|
638 |
|
return p; |