ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Polynomial.hpp
(Generate patch)

Comparing:
trunk/src/math/Polynomial.hpp (file contents), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/math/Polynomial.hpp (file contents), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include <list>
55   #include <map>
56   #include <utility>
57 + #include <complex>
58 + #include "config.h"
59 + #include "math/Eigenvalue.hpp"
60  
61 < namespace oopse {
61 > namespace OpenMD {
62 >  
63 >  template<typename Real> Real fastpow(Real x, int N) {
64 >    Real result(1); //or 1.0?
65  
59 template<typename ElemType> ElemType pow(ElemType x, int N) {
60    ElemType result(1);
61
66      for (int i = 0; i < N; ++i) {
67 <        result *= x;
67 >      result *= x;
68      }
69  
70      return result;
71 < }
71 >  }
72  
73 < /**
74 < * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
75 < * A generic Polynomial class
76 < */
77 < template<typename ElemType>
78 < class Polynomial {
73 >  /**
74 >   * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
75 >   * A generic Polynomial class
76 >   */
77 >  template<typename Real>
78 >  class Polynomial {
79  
80 <    public:
81 <        
82 <        typedef int ExponentType;
83 <        typedef ElemType CoefficientType;
84 <        typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
85 <        typedef typename PolynomialPairMap::iterator iterator;
86 <        typedef typename PolynomialPairMap::const_iterator const_iterator;
87 <        /**
88 <         * Calculates the value of this Polynomial evaluated at the given x value.
89 <         * @return The value of this Polynomial evaluates at the given x value
90 <         * @param x the value of the independent variable for this Polynomial function
91 <         */
92 <        ElemType evaluate(const ElemType& x) {
93 <            ElemType result = ElemType();
94 <            ExponentType exponent;
95 <            CoefficientType coefficient;
80 >  public:
81 >    typedef Polynomial<Real> PolynomialType;    
82 >    typedef int ExponentType;
83 >    typedef Real CoefficientType;
84 >    typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
85 >    typedef typename PolynomialPairMap::iterator iterator;
86 >    typedef typename PolynomialPairMap::const_iterator const_iterator;
87 >
88 >    Polynomial() {}
89 >    Polynomial(Real v) {setCoefficient(0, v);}
90 >    /**
91 >     * Calculates the value of this Polynomial evaluated at the given x value.
92 >     * @return The value of this Polynomial evaluates at the given x value  
93 >     * @param x the value of the independent variable for this
94 >     * Polynomial function
95 >     */
96 >    Real evaluate(const Real& x) {
97 >      Real result = Real();
98 >      ExponentType exponent;
99 >      CoefficientType coefficient;
100              
101 <            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
102 <                exponent = i->first;
103 <                coefficient = i->second;
104 <                result  += pow(x, exponent) * coefficient;
105 <            }
101 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
102 >        exponent = i->first;
103 >        coefficient = i->second;
104 >        result  += fastpow(x, exponent) * coefficient;
105 >      }
106  
107 <            return result;
108 <        }
107 >      return result;
108 >    }
109  
110 <        /**
111 <         * Returns the first derivative of this polynomial.
112 <         * @return the first derivative of this polynomial
113 <         * @param x
114 <         */
115 <        ElemType evaluateDerivative(const ElemType& x) {
116 <            ElemType result = ElemType();
117 <            ExponentType exponent;
118 <            CoefficientType coefficient;
110 >    /**
111 >     * Returns the first derivative of this polynomial.
112 >     * @return the first derivative of this polynomial
113 >     * @param x
114 >     */
115 >    Real evaluateDerivative(const Real& x) {
116 >      Real result = Real();
117 >      ExponentType exponent;
118 >      CoefficientType coefficient;
119              
120 <            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
121 <                exponent = i->first;
122 <                coefficient = i->second;
123 <                result  += pow(x, exponent - 1) * coefficient * exponent;
124 <            }
120 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
121 >        exponent = i->first;
122 >        coefficient = i->second;
123 >        result  += fastpow(x, exponent - 1) * coefficient * exponent;
124 >      }
125  
126 <            return result;
127 <        }
126 >      return result;
127 >    }
128  
121        /**
122         * Set the coefficent of the specified exponent, if the coefficient is already there, it
123         * will be overwritten.
124         * @param exponent exponent of a term in this Polynomial
125         * @param coefficient multiplier of a term in this Polynomial
126         */
127        
128        void setCoefficient(int exponent, const ElemType& coefficient) {
129            polyPairMap_.insert(PolynomialPairMap::value_type(exponent, coefficient));
130        }
129  
130 <        /**
131 <         * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the
132 <         * new coefficient to the old one, otherwise,  just call setCoefficent
133 <         * @param exponent exponent of a term in this Polynomial
134 <         * @param coefficient multiplier of a term in this Polynomial
135 <         */
136 <        
137 <        void addCoefficient(int exponent, const ElemType& coefficient) {
138 <            iterator i = polyPairMap_.find(exponent);
130 >    /**
131 >     * Set the coefficent of the specified exponent, if the
132 >     * coefficient is already there, it will be overwritten.
133 >     * @param exponent exponent of a term in this Polynomial
134 >     * @param coefficient multiplier of a term in this Polynomial
135 >     */        
136 >    void setCoefficient(int exponent, const Real& coefficient) {
137 >      polyPairMap_[exponent] = coefficient;
138 >    }
139 >    
140 >    /**
141 >     * Set the coefficent of the specified exponent. If the
142 >     * coefficient is already there, just add the new coefficient to
143 >     * the old one, otherwise, just call setCoefficent
144 >     * @param exponent exponent of a term in this Polynomial
145 >     * @param coefficient multiplier of a term in this Polynomial
146 >     */        
147 >    void addCoefficient(int exponent, const Real& coefficient) {
148 >      iterator i = polyPairMap_.find(exponent);
149  
150 <            if (i != end()) {
151 <                i->second += coefficient;
152 <            } else {
153 <                setCoefficient(exponent, coefficient);
154 <            }
155 <        }
150 >      if (i != end()) {
151 >        i->second += coefficient;
152 >      } else {
153 >        setCoefficient(exponent, coefficient);
154 >      }
155 >    }
156  
157 <
158 <        /**
159 <         * Returns the coefficient associated with the given power for this Polynomial.
160 <         * @return the coefficient associated with the given power for this Polynomial
161 <         * @exponent exponent of any term in this Polynomial
162 <         */
163 <        ElemType getCoefficient(ExponentType exponent) {
164 <            iterator i = polyPairMap_.find(exponent);
165 <
158 <            if (i != end()) {
159 <                return i->second;
160 <            } else {
161 <                return ElemType(0);
162 <            }
163 <        }
157 >    /**
158 >     * Returns the coefficient associated with the given power for
159 >     * this Polynomial.
160 >     * @return the coefficient associated with the given power for
161 >     * this Polynomial
162 >     * @exponent exponent of any term in this Polynomial
163 >     */
164 >    Real getCoefficient(ExponentType exponent) {
165 >      iterator i = polyPairMap_.find(exponent);
166  
167 <        iterator begin() {
168 <            return polyPairMap_.begin();
169 <        }
167 >      if (i != end()) {
168 >        return i->second;
169 >      } else {
170 >        return Real(0);
171 >      }
172 >    }
173  
174 <        const_iterator begin() const{
175 <            return polyPairMap_.begin();
176 <        }
174 >    iterator begin() {
175 >      return polyPairMap_.begin();
176 >    }
177 >
178 >    const_iterator begin() const{
179 >      return polyPairMap_.begin();
180 >    }
181          
182 <        iterator end() {
183 <            return polyPairMap_.end();
184 <        }
182 >    iterator end() {
183 >      return polyPairMap_.end();
184 >    }
185  
186 <        const_iterator end() const{
187 <            return polyPairMap_.end();
186 >    const_iterator end() const{
187 >      return polyPairMap_.end();
188 >    }
189 >
190 >    iterator find(ExponentType exponent) {
191 >      return polyPairMap_.find(exponent);
192 >    }
193 >
194 >    size_t size() {
195 >      return polyPairMap_.size();
196 >    }
197 >
198 >    int degree() {
199 >      int deg = 0;
200 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
201 >        if (i->first > deg)
202 >          deg = i->first;
203 >      }
204 >      return deg;
205 >    }
206 >
207 >    PolynomialType& operator = (const PolynomialType& p) {
208 >
209 >      if (this != &p)  // protect against invalid self-assignment
210 >        {
211 >          typename Polynomial<Real>::const_iterator i;
212 >
213 >          polyPairMap_.clear();  // clear out the old map
214 >      
215 >          for (i =  p.begin(); i != p.end(); ++i) {
216 >            this->setCoefficient(i->first, i->second);
217 >          }
218          }
219 +      // by convention, always return *this
220 +      return *this;
221 +    }
222  
223 <        iterator find(ExponentType exponent) {
224 <            return polyPairMap_.find(exponent);
223 >    PolynomialType& operator += (const PolynomialType& p) {
224 >      typename Polynomial<Real>::const_iterator i;
225 >
226 >      for (i =  p.begin(); i  != p.end(); ++i) {
227 >        this->addCoefficient(i->first, i->second);
228 >      }
229 >
230 >      return *this;        
231 >    }
232 >
233 >    PolynomialType& operator -= (const PolynomialType& p) {
234 >      typename Polynomial<Real>::const_iterator i;
235 >      for (i =  p.begin(); i  != p.end(); ++i) {
236 >        this->addCoefficient(i->first, -i->second);
237 >      }        
238 >      return *this;
239 >    }
240 >    
241 >    PolynomialType& operator *= (const PolynomialType& p) {
242 >      typename Polynomial<Real>::const_iterator i;
243 >      typename Polynomial<Real>::const_iterator j;
244 >      Polynomial<Real> p2(*this);
245 >      
246 >      polyPairMap_.clear();  // clear out old map
247 >      for (i = p2.begin(); i !=p2.end(); ++i) {
248 >        for (j = p.begin(); j !=p.end(); ++j) {
249 >          this->addCoefficient( i->first + j->first, i->second * j->second);
250          }
251 +      }
252 +      return *this;
253 +    }
254  
255 <        size_t size() {
256 <            return polyPairMap_.size();
255 >    //PolynomialType& operator *= (const Real v)
256 >    PolynomialType& operator *= (const Real v) {
257 >      typename Polynomial<Real>::const_iterator i;
258 >      //Polynomial<Real> result;
259 >      
260 >      for (i = this->begin(); i != this->end(); ++i) {
261 >        this->setCoefficient( i->first, i->second*v);
262 >      }
263 >      
264 >      return *this;
265 >    }
266 >
267 >    PolynomialType& operator += (const Real v) {    
268 >      this->addCoefficient( 0, v);
269 >      return *this;
270 >    }
271 >
272 >    /**
273 >     * Returns the first derivative of this polynomial.
274 >     * @return the first derivative of this polynomial
275 >     */
276 >    PolynomialType & getDerivative() {
277 >      Polynomial<Real> p;
278 >      
279 >      typename Polynomial<Real>::const_iterator i;
280 >      ExponentType exponent;
281 >      CoefficientType coefficient;
282 >      
283 >      for (i =  this->begin(); i  != this->end(); ++i) {
284 >        exponent = i->first;
285 >        coefficient = i->second;
286 >        p.setCoefficient(exponent-1, coefficient * exponent);
287 >      }
288 >    
289 >      return p;
290 >    }
291 >
292 >    // Creates the Companion matrix for a given polynomial
293 >    DynamicRectMatrix<Real> CreateCompanion() {
294 >      int rank = degree();
295 >      DynamicRectMatrix<Real> mat(rank, rank);
296 >      Real majorCoeff = getCoefficient(rank);
297 >      for(int i = 0; i < rank; ++i) {
298 >        for(int j = 0; j < rank; ++j) {
299 >          if(i - j == 1) {
300 >            mat(i, j) = 1;
301 >          } else if(j == rank-1) {
302 >            mat(i, j) = -1 * getCoefficient(i) / majorCoeff;
303 >          }
304          }
305 <        
306 <    private:
307 <        
308 <        PolynomialPairMap polyPairMap_;
309 < };
305 >      }
306 >      return mat;
307 >    }
308 >    
309 >    // Find the Roots of a given polynomial
310 >    std::vector<complex<Real> > FindRoots() {
311 >      int rank = degree();
312 >      DynamicRectMatrix<Real> companion = CreateCompanion();
313 >      JAMA::Eigenvalue<Real> eig(companion);
314 >      DynamicVector<Real> reals, imags;
315 >      eig.getRealEigenvalues(reals);
316 >      eig.getImagEigenvalues(imags);
317 >      
318 >      std::vector<complex<Real> > roots;
319 >      for (int i = 0; i < rank; i++) {
320 >        roots.push_back(complex<Real>(reals(i), imags(i)));
321 >      }
322  
323 +      return roots;
324 +    }
325  
326 < /**
327 < * Generates and returns the product of two given Polynomials.
328 < * @return A Polynomial containing the product of the two given Polynomial parameters
329 < */
330 < template<typename ElemType>
331 < Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
332 <    typename Polynomial<ElemType>::const_iterator i;
333 <    typename Polynomial<ElemType>::const_iterator j;
334 <    Polynomial<ElemType> p;
326 >    std::vector<Real> FindRealRoots() {
327 >      
328 >      const Real fEpsilon = 1.0e-8;
329 >      std::vector<Real> roots;
330 >      roots.clear();
331 >      
332 >      const int deg = degree();
333 >      
334 >      switch (deg) {
335 >      case 1: {
336 >        Real fC1 = getCoefficient(1);
337 >        Real fC0 = getCoefficient(0);
338 >        roots.push_back( -fC0 / fC1);
339 >        return roots;
340 >      }
341 >        break;      
342 >      case 2: {
343 >        Real fC2 = getCoefficient(2);
344 >        Real fC1 = getCoefficient(1);
345 >        Real fC0 = getCoefficient(0);
346 >        Real fDiscr = fC1*fC1 - 4.0*fC0*fC2;
347 >        if (abs(fDiscr) <= fEpsilon) {
348 >          fDiscr = (Real)0.0;
349 >        }
350 >      
351 >        if (fDiscr < (Real)0.0) {  // complex roots only
352 >          return roots;
353 >        }
354 >      
355 >        Real fTmp = ((Real)0.5)/fC2;
356 >      
357 >        if (fDiscr > (Real)0.0) { // 2 real roots
358 >          fDiscr = sqrt(fDiscr);
359 >          roots.push_back(fTmp*(-fC1 - fDiscr));
360 >          roots.push_back(fTmp*(-fC1 + fDiscr));
361 >        } else {
362 >          roots.push_back(-fTmp * fC1);  // 1 real root
363 >        }
364 >      }
365 >        return roots;
366 >        break;
367 >      
368 >      case 3: {
369 >        Real fC3 = getCoefficient(3);
370 >        Real fC2 = getCoefficient(2);
371 >        Real fC1 = getCoefficient(1);
372 >        Real fC0 = getCoefficient(0);
373 >      
374 >        // make polynomial monic, x^3+c2*x^2+c1*x+c0
375 >        Real fInvC3 = ((Real)1.0)/fC3;
376 >        fC0 *= fInvC3;
377 >        fC1 *= fInvC3;
378 >        fC2 *= fInvC3;
379 >      
380 >        // convert to y^3+a*y+b = 0 by x = y-c2/3
381 >        const Real fThird = (Real)1.0/(Real)3.0;
382 >        const Real fTwentySeventh = (Real)1.0/(Real)27.0;
383 >        Real fOffset = fThird*fC2;
384 >        Real fA = fC1 - fC2*fOffset;
385 >        Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh;
386 >        Real fHalfB = ((Real)0.5)*fB;
387 >      
388 >        Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh;
389 >        if (fabs(fDiscr) <= fEpsilon) {
390 >          fDiscr = (Real)0.0;
391 >        }
392 >      
393 >        if (fDiscr > (Real)0.0) {  // 1 real, 2 complex roots
394 >        
395 >          fDiscr = sqrt(fDiscr);
396 >          Real fTemp = -fHalfB + fDiscr;
397 >          Real root;
398 >          if (fTemp >= (Real)0.0) {
399 >            root = pow(fTemp,fThird);
400 >          } else {
401 >            root = -pow(-fTemp,fThird);
402 >          }
403 >          fTemp = -fHalfB - fDiscr;
404 >          if ( fTemp >= (Real)0.0 ) {
405 >            root += pow(fTemp,fThird);          
406 >          } else {
407 >            root -= pow(-fTemp,fThird);
408 >          }
409 >          root -= fOffset;
410 >        
411 >          roots.push_back(root);
412 >        } else if (fDiscr < (Real)0.0) {
413 >          const Real fSqrt3 = sqrt((Real)3.0);
414 >          Real fDist = sqrt(-fThird*fA);
415 >          Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB);
416 >          Real fCos = cos(fAngle);
417 >          Real fSin = sin(fAngle);
418 >          roots.push_back(((Real)2.0)*fDist*fCos-fOffset);
419 >          roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset);
420 >          roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset);
421 >        } else {
422 >          Real fTemp;
423 >          if (fHalfB >= (Real)0.0) {
424 >            fTemp = -pow(fHalfB,fThird);
425 >          } else {
426 >            fTemp = pow(-fHalfB,fThird);
427 >          }
428 >          roots.push_back(((Real)2.0)*fTemp-fOffset);
429 >          roots.push_back(-fTemp-fOffset);
430 >          roots.push_back(-fTemp-fOffset);
431 >        }
432 >      }
433 >        return roots;
434 >        break;
435 >      case 4: {
436 >        Real fC4 = getCoefficient(4);
437 >        Real fC3 = getCoefficient(3);
438 >        Real fC2 = getCoefficient(2);
439 >        Real fC1 = getCoefficient(1);
440 >        Real fC0 = getCoefficient(0);
441 >      
442 >        // make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0
443 >        Real fInvC4 = ((Real)1.0)/fC4;
444 >        fC0 *= fInvC4;
445 >        fC1 *= fInvC4;
446 >        fC2 *= fInvC4;
447 >        fC3 *= fInvC4;
448 >  
449 >        // reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0
450 >        Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1;
451 >        Real fR1 = fC3*fC1 - ((Real)4.0)*fC0;
452 >        Real fR2 = -fC2;
453 >        Polynomial<Real> tempCubic;
454 >        tempCubic.setCoefficient(0, fR0);
455 >        tempCubic.setCoefficient(1, fR1);
456 >        tempCubic.setCoefficient(2, fR2);
457 >        tempCubic.setCoefficient(3, 1.0);
458 >        std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always
459 >        // produces
460 >        // at
461 >        // least
462 >        // one
463 >        // root
464 >        Real fY = cubeRoots[0];
465 >      
466 >        Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY;
467 >        if (fabs(fDiscr) <= fEpsilon) {
468 >          fDiscr = (Real)0.0;
469 >        }
470 >  
471 >        if (fDiscr > (Real)0.0) {
472 >          Real fR = sqrt(fDiscr);
473 >          Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2;
474 >          Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) /
475 >            (((Real)4.0)*fR);
476 >      
477 >          Real fTplus = fT1+fT2;
478 >          Real fTminus = fT1-fT2;
479 >          if (fabs(fTplus) <= fEpsilon) {
480 >            fTplus = (Real)0.0;
481 >          }
482 >          if (fabs(fTminus) <= fEpsilon) {
483 >            fTminus = (Real)0.0;
484 >          }
485 >      
486 >          if (fTplus >= (Real)0.0) {
487 >            Real fD = sqrt(fTplus);
488 >            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD));
489 >            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD));
490 >          }
491 >          if (fTminus >= (Real)0.0) {
492 >            Real fE = sqrt(fTminus);
493 >            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR));
494 >            roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR));
495 >          }
496 >        } else if (fDiscr < (Real)0.0) {
497 >          //roots.clear();
498 >        } else {        
499 >          Real fT2 = fY*fY-((Real)4.0)*fC0;
500 >          if (fT2 >= -fEpsilon) {
501 >            if (fT2 < (Real)0.0) { // round to zero
502 >              fT2 = (Real)0.0;
503 >            }
504 >            fT2 = ((Real)2.0)*sqrt(fT2);
505 >            Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2;
506 >            if (fT1+fT2 >= fEpsilon) {
507 >              Real fD = sqrt(fT1+fT2);
508 >              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD);
509 >              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD);
510 >            }
511 >            if (fT1-fT2 >= fEpsilon) {
512 >              Real fE = sqrt(fT1-fT2);
513 >              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE);
514 >              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE);
515 >            }
516 >          }
517 >        }
518 >      }
519 >        return roots;
520 >        break;
521 >      default: {
522 >        DynamicRectMatrix<Real> companion = CreateCompanion();
523 >        JAMA::Eigenvalue<Real> eig(companion);
524 >        DynamicVector<Real> reals, imags;
525 >        eig.getRealEigenvalues(reals);
526 >        eig.getImagEigenvalues(imags);
527 >      
528 >        for (int i = 0; i < deg; i++) {
529 >          if (fabs(imags(i)) < fEpsilon)
530 >            roots.push_back(reals(i));        
531 >        }      
532 >      }
533 >        return roots;
534 >        break;
535 >      }
536 >
537 >      return roots; // should be empty if you got here
538 >    }
539 >  
540 >  private:
541 >        
542 >    PolynomialPairMap polyPairMap_;
543 >  };
544 >
545 >  
546 >  /**
547 >   * Generates and returns the product of two given Polynomials.
548 >   * @return A Polynomial containing the product of the two given Polynomial parameters
549 >   */
550 >  template<typename Real>
551 >  Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
552 >    typename Polynomial<Real>::const_iterator i;
553 >    typename Polynomial<Real>::const_iterator j;
554 >    Polynomial<Real> p;
555      
556      for (i = p1.begin(); i !=p1.end(); ++i) {
557 <        for (j = p2.begin(); j !=p2.end(); ++j) {
558 <            p.addCoefficient( i->first + j->first, i->second * j->second);
559 <        }
557 >      for (j = p2.begin(); j !=p2.end(); ++j) {
558 >        p.addCoefficient( i->first + j->first, i->second * j->second);
559 >      }
560      }
561  
562      return p;
563 < }
563 >  }
564  
565 < /**
566 < * Generates and returns the sum of two given Polynomials.
567 < * @param p1 the first polynomial
568 < * @param p2 the second polynomial
569 < */
570 < template<typename ElemType>
571 < Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
572 <    Polynomial<ElemType> p(p1);
565 >  template<typename Real>
566 >  Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) {
567 >    typename Polynomial<Real>::const_iterator i;
568 >    Polynomial<Real> result;
569 >    
570 >    for (i = p.begin(); i !=p.end(); ++i) {
571 >        result.setCoefficient( i->first , i->second * v);
572 >    }
573  
574 <    typename Polynomial<ElemType>::const_iterator i;
574 >    return result;
575 >  }
576  
577 +  template<typename Real>
578 +  Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) {
579 +    typename Polynomial<Real>::const_iterator i;
580 +    Polynomial<Real> result;
581 +    
582 +    for (i = p.begin(); i !=p.end(); ++i) {
583 +        result.setCoefficient( i->first , i->second * v);
584 +    }
585 +
586 +    return result;
587 +  }
588 +  
589 +  /**
590 +   * Generates and returns the sum of two given Polynomials.
591 +   * @param p1 the first polynomial
592 +   * @param p2 the second polynomial
593 +   */
594 +  template<typename Real>
595 +  Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
596 +    Polynomial<Real> p(p1);
597 +
598 +    typename Polynomial<Real>::const_iterator i;
599 +
600      for (i =  p2.begin(); i  != p2.end(); ++i) {
601 <        p.addCoefficient(i->first, i->second);
601 >      p.addCoefficient(i->first, i->second);
602      }
603  
604      return p;
605  
606 < }
606 >  }
607  
608 < /**
609 < * Generates and returns the difference of two given Polynomials.
610 < * @return
611 < * @param p1 the first polynomial
612 < * @param p2 the second polynomial
613 < */
614 < template<typename ElemType>
615 < Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
616 <    Polynomial<ElemType> p(p1);
608 >  /**
609 >   * Generates and returns the difference of two given Polynomials.
610 >   * @return
611 >   * @param p1 the first polynomial
612 >   * @param p2 the second polynomial
613 >   */
614 >  template<typename Real>
615 >  Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
616 >    Polynomial<Real> p(p1);
617  
618 <    typename Polynomial<ElemType>::const_iterator i;
618 >    typename Polynomial<Real>::const_iterator i;
619  
620      for (i =  p2.begin(); i  != p2.end(); ++i) {
621 <        p.addCoefficient(i->first, -i->second);
621 >      p.addCoefficient(i->first, -i->second);
622      }
623  
624      return p;
625  
626 < }
626 >  }
627  
628 < /**
629 < * Tests if two polynomial have the same exponents
630 < * @return true if these all of the exponents in these Polynomial are identical
631 < * @param p1 the first polynomial
632 < * @param p2 the second polynomial
633 < * @note this function does not compare the coefficient
634 < */
635 < template<typename ElemType>
636 < bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
628 >  /**
629 >   * Returns the first derivative of this polynomial.
630 >   * @return the first derivative of this polynomial
631 >   */
632 >  template<typename Real>
633 >  Polynomial<Real> getDerivative(const Polynomial<Real>& p1) {
634 >    Polynomial<Real> p;
635 >    
636 >    typename Polynomial<Real>::const_iterator i;
637 >    int exponent;
638 >    Real coefficient;
639 >    
640 >    for (i =  p1.begin(); i  != p1.end(); ++i) {
641 >      exponent = i->first;
642 >      coefficient = i->second;
643 >      p.setCoefficient(exponent-1, coefficient * exponent);
644 >    }
645 >    
646 >    return p;
647 >  }
648  
649 <    typename Polynomial<ElemType>::const_iterator i;
650 <    typename Polynomial<ElemType>::const_iterator j;
649 >  /**
650 >   * Tests if two polynomial have the same exponents
651 >   * @return true if all of the exponents in these Polynomial are identical
652 >   * @param p1 the first polynomial
653 >   * @param p2 the second polynomial
654 >   * @note this function does not compare the coefficient
655 >   */
656 >  template<typename Real>
657 >  bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) {
658  
659 +    typename Polynomial<Real>::const_iterator i;
660 +    typename Polynomial<Real>::const_iterator j;
661 +
662      if (p1.size() != p2.size() ) {
663 <        return false;
663 >      return false;
664      }
665      
666      for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) {
667 <        if (i->first != j->first) {
668 <            return false;
669 <        }
667 >      if (i->first != j->first) {
668 >        return false;
669 >      }
670      }
671  
672      return true;
673 < }
673 >  }
674  
279 typedef Polynomial<double> DoublePolynomial;
675  
676 < } //end namespace oopse
676 >
677 >  typedef Polynomial<RealType> DoublePolynomial;
678 >
679 > } //end namespace OpenMD
680   #endif //MATH_POLYNOMIAL_HPP

Comparing:
trunk/src/math/Polynomial.hpp (property svn:keywords), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/math/Polynomial.hpp (property svn:keywords), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines