159 |
|
* this Polynomial. |
160 |
|
* @return the coefficient associated with the given power for |
161 |
|
* this Polynomial |
162 |
< |
* @exponent exponent of any term in this Polynomial |
162 |
> |
* @param exponent exponent of any term in this Polynomial |
163 |
|
*/ |
164 |
|
Real getCoefficient(ExponentType exponent) { |
165 |
|
iterator i = polyPairMap_.find(exponent); |
338 |
|
roots.push_back( -fC0 / fC1); |
339 |
|
return roots; |
340 |
|
} |
341 |
– |
break; |
341 |
|
case 2: { |
342 |
|
Real fC2 = getCoefficient(2); |
343 |
|
Real fC1 = getCoefficient(1); |
346 |
|
if (abs(fDiscr) <= fEpsilon) { |
347 |
|
fDiscr = (Real)0.0; |
348 |
|
} |
349 |
< |
|
349 |
> |
|
350 |
|
if (fDiscr < (Real)0.0) { // complex roots only |
351 |
|
return roots; |
352 |
|
} |
353 |
< |
|
353 |
> |
|
354 |
|
Real fTmp = ((Real)0.5)/fC2; |
355 |
< |
|
355 |
> |
|
356 |
|
if (fDiscr > (Real)0.0) { // 2 real roots |
357 |
|
fDiscr = sqrt(fDiscr); |
358 |
|
roots.push_back(fTmp*(-fC1 - fDiscr)); |
361 |
|
roots.push_back(-fTmp * fC1); // 1 real root |
362 |
|
} |
363 |
|
} |
364 |
< |
return roots; |
366 |
< |
break; |
367 |
< |
|
364 |
> |
return roots; |
365 |
|
case 3: { |
366 |
|
Real fC3 = getCoefficient(3); |
367 |
|
Real fC2 = getCoefficient(2); |
428 |
|
} |
429 |
|
} |
430 |
|
return roots; |
434 |
– |
break; |
431 |
|
case 4: { |
432 |
|
Real fC4 = getCoefficient(4); |
433 |
|
Real fC3 = getCoefficient(3); |
513 |
|
} |
514 |
|
} |
515 |
|
return roots; |
520 |
– |
break; |
516 |
|
default: { |
517 |
|
DynamicRectMatrix<Real> companion = CreateCompanion(); |
518 |
|
JAMA::Eigenvalue<Real> eig(companion); |
526 |
|
} |
527 |
|
} |
528 |
|
return roots; |
534 |
– |
break; |
529 |
|
} |
530 |
|
|
531 |
|
return roots; // should be empty if you got here |
532 |
|
} |
533 |
< |
|
533 |
> |
|
534 |
|
private: |
535 |
|
|
536 |
|
PolynomialPairMap polyPairMap_; |