6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
58 |
|
#include "config.h" |
59 |
|
#include "math/Eigenvalue.hpp" |
60 |
|
|
61 |
< |
namespace oopse { |
61 |
> |
namespace OpenMD { |
62 |
|
|
63 |
|
template<typename Real> Real fastpow(Real x, int N) { |
64 |
|
Real result(1); //or 1.0? |
159 |
|
* this Polynomial. |
160 |
|
* @return the coefficient associated with the given power for |
161 |
|
* this Polynomial |
162 |
< |
* @exponent exponent of any term in this Polynomial |
162 |
> |
* @param exponent exponent of any term in this Polynomial |
163 |
|
*/ |
164 |
|
Real getCoefficient(ExponentType exponent) { |
165 |
|
iterator i = polyPairMap_.find(exponent); |
273 |
|
* Returns the first derivative of this polynomial. |
274 |
|
* @return the first derivative of this polynomial |
275 |
|
*/ |
276 |
< |
PolynomialType & getDerivative() { |
277 |
< |
Polynomial<Real> p(); |
276 |
> |
PolynomialType* getDerivative() { |
277 |
> |
Polynomial<Real>* p = new Polynomial<Real>(); |
278 |
|
|
279 |
|
typename Polynomial<Real>::const_iterator i; |
280 |
|
ExponentType exponent; |
283 |
|
for (i = this->begin(); i != this->end(); ++i) { |
284 |
|
exponent = i->first; |
285 |
|
coefficient = i->second; |
286 |
< |
p.setCoefficient(exponent-1, coefficient * exponent); |
286 |
> |
p->setCoefficient(exponent-1, coefficient * exponent); |
287 |
|
} |
288 |
|
|
289 |
|
return p; |
317 |
|
|
318 |
|
std::vector<complex<Real> > roots; |
319 |
|
for (int i = 0; i < rank; i++) { |
320 |
< |
roots.push_back(complex(reals(i), imags(i))); |
320 |
> |
roots.push_back(complex<Real>(reals(i), imags(i))); |
321 |
|
} |
322 |
|
|
323 |
|
return roots; |
338 |
|
roots.push_back( -fC0 / fC1); |
339 |
|
return roots; |
340 |
|
} |
340 |
– |
break; |
341 |
|
case 2: { |
342 |
|
Real fC2 = getCoefficient(2); |
343 |
|
Real fC1 = getCoefficient(1); |
346 |
|
if (abs(fDiscr) <= fEpsilon) { |
347 |
|
fDiscr = (Real)0.0; |
348 |
|
} |
349 |
< |
|
349 |
> |
|
350 |
|
if (fDiscr < (Real)0.0) { // complex roots only |
351 |
|
return roots; |
352 |
|
} |
353 |
< |
|
353 |
> |
|
354 |
|
Real fTmp = ((Real)0.5)/fC2; |
355 |
< |
|
355 |
> |
|
356 |
|
if (fDiscr > (Real)0.0) { // 2 real roots |
357 |
|
fDiscr = sqrt(fDiscr); |
358 |
|
roots.push_back(fTmp*(-fC1 - fDiscr)); |
361 |
|
roots.push_back(-fTmp * fC1); // 1 real root |
362 |
|
} |
363 |
|
} |
364 |
< |
return roots; |
365 |
< |
break; |
366 |
< |
|
364 |
> |
return roots; |
365 |
|
case 3: { |
366 |
|
Real fC3 = getCoefficient(3); |
367 |
|
Real fC2 = getCoefficient(2); |
428 |
|
} |
429 |
|
} |
430 |
|
return roots; |
433 |
– |
break; |
431 |
|
case 4: { |
432 |
|
Real fC4 = getCoefficient(4); |
433 |
|
Real fC3 = getCoefficient(3); |
513 |
|
} |
514 |
|
} |
515 |
|
return roots; |
519 |
– |
break; |
516 |
|
default: { |
517 |
|
DynamicRectMatrix<Real> companion = CreateCompanion(); |
518 |
|
JAMA::Eigenvalue<Real> eig(companion); |
526 |
|
} |
527 |
|
} |
528 |
|
return roots; |
533 |
– |
break; |
529 |
|
} |
535 |
– |
|
536 |
– |
return roots; // should be empty if you got here |
530 |
|
} |
531 |
< |
|
531 |
> |
|
532 |
|
private: |
533 |
|
|
534 |
|
PolynomialPairMap polyPairMap_; |
622 |
|
* @return the first derivative of this polynomial |
623 |
|
*/ |
624 |
|
template<typename Real> |
625 |
< |
Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { |
626 |
< |
Polynomial<Real> p(); |
625 |
> |
Polynomial<Real> * getDerivative(const Polynomial<Real>& p1) { |
626 |
> |
Polynomial<Real> * p = new Polynomial<Real>(); |
627 |
|
|
628 |
|
typename Polynomial<Real>::const_iterator i; |
629 |
< |
ExponentType exponent; |
630 |
< |
CoefficientType coefficient; |
629 |
> |
int exponent; |
630 |
> |
Real coefficient; |
631 |
|
|
632 |
|
for (i = p1.begin(); i != p1.end(); ++i) { |
633 |
|
exponent = i->first; |
634 |
|
coefficient = i->second; |
635 |
< |
p.setCoefficient(exponent-1, coefficient * exponent); |
635 |
> |
p->setCoefficient(exponent-1, coefficient * exponent); |
636 |
|
} |
637 |
|
|
638 |
|
return p; |
668 |
|
|
669 |
|
typedef Polynomial<RealType> DoublePolynomial; |
670 |
|
|
671 |
< |
} //end namespace oopse |
671 |
> |
} //end namespace OpenMD |
672 |
|
#endif //MATH_POLYNOMIAL_HPP |