ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Polynomial.hpp
(Generate patch)

Comparing trunk/src/math/Polynomial.hpp (file contents):
Revision 385 by tim, Tue Mar 1 20:10:14 2005 UTC vs.
Revision 1230 by cpuglis, Fri Mar 7 19:37:14 2008 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 53 | Line 53
53   #include <list>
54   #include <map>
55   #include <utility>
56 <
56 > #include "config.h"
57   namespace oopse {
58  
59 < template<typename ElemType> ElemType pow(ElemType x, int N) {
59 >  template<typename ElemType> ElemType pow(ElemType x, int N) {
60      ElemType result(1);
61  
62      for (int i = 0; i < N; ++i) {
63 <        result *= x;
63 >      result *= x;
64      }
65  
66      return result;
67 < }
67 >  }
68  
69 < /**
70 < * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
71 < * A generic Polynomial class
72 < */
73 < template<typename ElemType>
74 < class Polynomial {
69 >  /**
70 >   * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
71 >   * A generic Polynomial class
72 >   */
73 >  template<typename ElemType>
74 >  class Polynomial {
75  
76 <    public:
77 <        
78 <        typedef int ExponentType;
79 <        typedef ElemType CoefficientType;
80 <        typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
81 <        typedef typename PolynomialPairMap::iterator iterator;
82 <        typedef typename PolynomialPairMap::const_iterator const_iterator;
83 <        /**
84 <         * Calculates the value of this Polynomial evaluated at the given x value.
85 <         * @return The value of this Polynomial evaluates at the given x value
86 <         * @param x the value of the independent variable for this Polynomial function
87 <         */
88 <        ElemType evaluate(const ElemType& x) {
89 <            ElemType result = ElemType();
90 <            ExponentType exponent;
91 <            CoefficientType coefficient;
76 >  public:
77 >    typedef Polynomial<ElemType> PolynomialType;    
78 >    typedef int ExponentType;
79 >    typedef ElemType CoefficientType;
80 >    typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
81 >    typedef typename PolynomialPairMap::iterator iterator;
82 >    typedef typename PolynomialPairMap::const_iterator const_iterator;
83 >
84 >    Polynomial() {}
85 >    Polynomial(ElemType v) {setCoefficient(0, v);}
86 >    /**
87 >     * Calculates the value of this Polynomial evaluated at the given x value.
88 >     * @return The value of this Polynomial evaluates at the given x value
89 >     * @param x the value of the independent variable for this Polynomial function
90 >     */
91 >    ElemType evaluate(const ElemType& x) {
92 >      ElemType result = ElemType();
93 >      ExponentType exponent;
94 >      CoefficientType coefficient;
95              
96 <            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
97 <                exponent = i->first;
98 <                coefficient = i->second;
99 <                result  += pow(x, exponent) * coefficient;
100 <            }
96 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
97 >        exponent = i->first;
98 >        coefficient = i->second;
99 >        result  += pow(x, exponent) * coefficient;
100 >      }
101  
102 <            return result;
103 <        }
102 >      return result;
103 >    }
104  
105 <        /**
106 <         * Returns the first derivative of this polynomial.
107 <         * @return the first derivative of this polynomial
108 <         * @param x
109 <         */
110 <        ElemType evaluateDerivative(const ElemType& x) {
111 <            ElemType result = ElemType();
112 <            ExponentType exponent;
113 <            CoefficientType coefficient;
105 >    /**
106 >     * Returns the first derivative of this polynomial.
107 >     * @return the first derivative of this polynomial
108 >     * @param x
109 >     */
110 >    ElemType evaluateDerivative(const ElemType& x) {
111 >      ElemType result = ElemType();
112 >      ExponentType exponent;
113 >      CoefficientType coefficient;
114              
115 <            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
116 <                exponent = i->first;
117 <                coefficient = i->second;
118 <                result  += pow(x, exponent - 1) * coefficient * exponent;
119 <            }
115 >      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
116 >        exponent = i->first;
117 >        coefficient = i->second;
118 >        result  += pow(x, exponent - 1) * coefficient * exponent;
119 >      }
120  
121 <            return result;
122 <        }
121 >      return result;
122 >    }
123  
124 <        /**
125 <         * Set the coefficent of the specified exponent, if the coefficient is already there, it
126 <         * will be overwritten.
127 <         * @param exponent exponent of a term in this Polynomial
128 <         * @param coefficient multiplier of a term in this Polynomial
129 <         */
124 >    /**
125 >     * Set the coefficent of the specified exponent, if the coefficient is already there, it
126 >     * will be overwritten.
127 >     * @param exponent exponent of a term in this Polynomial
128 >     * @param coefficient multiplier of a term in this Polynomial
129 >     */
130          
131 <        void setCoefficient(int exponent, const ElemType& coefficient) {
132 <            polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient));
133 <        }
131 >    void setCoefficient(int exponent, const ElemType& coefficient) {
132 >      polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient));
133 >    }
134  
135 <        /**
136 <         * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the
137 <         * new coefficient to the old one, otherwise,  just call setCoefficent
138 <         * @param exponent exponent of a term in this Polynomial
139 <         * @param coefficient multiplier of a term in this Polynomial
140 <         */
135 >    /**
136 >     * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the
137 >     * new coefficient to the old one, otherwise,  just call setCoefficent
138 >     * @param exponent exponent of a term in this Polynomial
139 >     * @param coefficient multiplier of a term in this Polynomial
140 >     */
141          
142 <        void addCoefficient(int exponent, const ElemType& coefficient) {
143 <            iterator i = polyPairMap_.find(exponent);
142 >    void addCoefficient(int exponent, const ElemType& coefficient) {
143 >      iterator i = polyPairMap_.find(exponent);
144  
145 <            if (i != end()) {
146 <                i->second += coefficient;
147 <            } else {
148 <                setCoefficient(exponent, coefficient);
149 <            }
150 <        }
145 >      if (i != end()) {
146 >        i->second += coefficient;
147 >      } else {
148 >        setCoefficient(exponent, coefficient);
149 >      }
150 >    }
151  
152  
153 <        /**
154 <         * Returns the coefficient associated with the given power for this Polynomial.
155 <         * @return the coefficient associated with the given power for this Polynomial
156 <         * @exponent exponent of any term in this Polynomial
157 <         */
158 <        ElemType getCoefficient(ExponentType exponent) {
159 <            iterator i = polyPairMap_.find(exponent);
153 >    /**
154 >     * Returns the coefficient associated with the given power for this Polynomial.
155 >     * @return the coefficient associated with the given power for this Polynomial
156 >     * @exponent exponent of any term in this Polynomial
157 >     */
158 >    ElemType getCoefficient(ExponentType exponent) {
159 >      iterator i = polyPairMap_.find(exponent);
160  
161 <            if (i != end()) {
162 <                return i->second;
163 <            } else {
164 <                return ElemType(0);
165 <            }
166 <        }
161 >      if (i != end()) {
162 >        return i->second;
163 >      } else {
164 >        return ElemType(0);
165 >      }
166 >    }
167  
168 <        iterator begin() {
169 <            return polyPairMap_.begin();
170 <        }
168 >    iterator begin() {
169 >      return polyPairMap_.begin();
170 >    }
171  
172 <        const_iterator begin() const{
173 <            return polyPairMap_.begin();
174 <        }
172 >    const_iterator begin() const{
173 >      return polyPairMap_.begin();
174 >    }
175          
176 <        iterator end() {
177 <            return polyPairMap_.end();
178 <        }
176 <
177 <        const_iterator end() const{
178 <            return polyPairMap_.end();
179 <        }
176 >    iterator end() {
177 >      return polyPairMap_.end();
178 >    }
179  
180 <        iterator find(ExponentType exponent) {
181 <            return polyPairMap_.find(exponent);
180 >    const_iterator end() const{
181 >      return polyPairMap_.end();
182 >    }
183 >
184 >    iterator find(ExponentType exponent) {
185 >      return polyPairMap_.find(exponent);
186 >    }
187 >
188 >    size_t size() {
189 >      return polyPairMap_.size();
190 >    }
191 >
192 >    PolynomialType& operator = (const PolynomialType& p) {
193 >
194 >      if (this != &p)  // protect against invalid self-assignment
195 >      {
196 >        typename Polynomial<ElemType>::const_iterator i;
197 >
198 >        polyPairMap_.clear();  // clear out the old map
199 >      
200 >        for (i =  p.begin(); i != p.end(); ++i) {
201 >          this->setCoefficient(i->first, i->second);
202          }
203 +      }
204 +      // by convention, always return *this
205 +      return *this;
206 +    }
207  
208 <        size_t size() {
209 <            return polyPairMap_.size();
208 >    PolynomialType& operator += (const PolynomialType& p) {
209 >        typename Polynomial<ElemType>::const_iterator i;
210 >
211 >        for (i =  p.begin(); i  != p.end(); ++i) {
212 >          this->addCoefficient(i->first, i->second);
213          }
214 +
215 +        return *this;        
216 +    }
217 +
218 +    PolynomialType& operator -= (const PolynomialType& p) {
219 +        typename Polynomial<ElemType>::const_iterator i;
220 +        for (i =  p.begin(); i  != p.end(); ++i) {
221 +          this->addCoefficient(i->first, -i->second);
222 +        }        
223 +        return *this;
224 +    }
225 +
226 +    PolynomialType& operator *= (const PolynomialType& p) {
227 +    typename Polynomial<ElemType>::const_iterator i;
228 +    typename Polynomial<ElemType>::const_iterator j;
229 +    
230 +    for (i = this->begin(); i !=this->end(); ++i) {
231 +      for (j = p.begin(); j !=p.end(); ++j) {
232 +        this->addCoefficient( i->first + j->first, i->second * j->second);
233 +      }
234 +    }
235 +
236 +    return *this;
237 +    }
238 +
239 +  
240 +  private:
241          
242 <    private:
243 <        
191 <        PolynomialPairMap polyPairMap_;
192 < };
242 >    PolynomialPairMap polyPairMap_;
243 >  };
244  
245  
246 < /**
247 < * Generates and returns the product of two given Polynomials.
248 < * @return A Polynomial containing the product of the two given Polynomial parameters
249 < */
250 < template<typename ElemType>
251 < Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
246 >  /**
247 >   * Generates and returns the product of two given Polynomials.
248 >   * @return A Polynomial containing the product of the two given Polynomial parameters
249 >   */
250 >  template<typename ElemType>
251 >  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
252      typename Polynomial<ElemType>::const_iterator i;
253      typename Polynomial<ElemType>::const_iterator j;
254      Polynomial<ElemType> p;
255      
256      for (i = p1.begin(); i !=p1.end(); ++i) {
257 <        for (j = p2.begin(); j !=p2.end(); ++j) {
258 <            p.addCoefficient( i->first + j->first, i->second * j->second);
259 <        }
257 >      for (j = p2.begin(); j !=p2.end(); ++j) {
258 >        p.addCoefficient( i->first + j->first, i->second * j->second);
259 >      }
260      }
261  
262      return p;
263 < }
263 >  }
264  
265 < /**
266 < * Generates and returns the sum of two given Polynomials.
267 < * @param p1 the first polynomial
268 < * @param p2 the second polynomial
269 < */
270 < template<typename ElemType>
271 < Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
265 >  template<typename ElemType>
266 >  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
267 >    typename Polynomial<ElemType>::const_iterator i;
268 >    Polynomial<ElemType> result;
269 >    
270 >    for (i = p.begin(); i !=p.end(); ++i) {
271 >        result.addCoefficient( i->first , i->second * v);
272 >    }
273 >
274 >    return result;
275 >  }
276 >
277 >  template<typename ElemType>
278 >  Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
279 >    typename Polynomial<ElemType>::const_iterator i;
280 >    Polynomial<ElemType> result;
281 >    
282 >    for (i = p.begin(); i !=p.end(); ++i) {
283 >        result.addCoefficient( i->first , i->second * v);
284 >    }
285 >
286 >    return result;
287 >  }
288 >  
289 >  /**
290 >   * Generates and returns the sum of two given Polynomials.
291 >   * @param p1 the first polynomial
292 >   * @param p2 the second polynomial
293 >   */
294 >  template<typename ElemType>
295 >  Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
296      Polynomial<ElemType> p(p1);
297  
298      typename Polynomial<ElemType>::const_iterator i;
299  
300      for (i =  p2.begin(); i  != p2.end(); ++i) {
301 <        p.addCoefficient(i->first, i->second);
301 >      p.addCoefficient(i->first, i->second);
302      }
303  
304      return p;
305  
306 < }
306 >  }
307  
308 < /**
309 < * Generates and returns the difference of two given Polynomials.
310 < * @return
311 < * @param p1 the first polynomial
312 < * @param p2 the second polynomial
313 < */
314 < template<typename ElemType>
315 < Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
308 >  /**
309 >   * Generates and returns the difference of two given Polynomials.
310 >   * @return
311 >   * @param p1 the first polynomial
312 >   * @param p2 the second polynomial
313 >   */
314 >  template<typename ElemType>
315 >  Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
316      Polynomial<ElemType> p(p1);
317  
318      typename Polynomial<ElemType>::const_iterator i;
319  
320      for (i =  p2.begin(); i  != p2.end(); ++i) {
321 <        p.addCoefficient(i->first, -i->second);
321 >      p.addCoefficient(i->first, -i->second);
322      }
323  
324      return p;
325  
326 < }
326 >  }
327  
328 < /**
329 < * Tests if two polynomial have the same exponents
330 < * @return true if these all of the exponents in these Polynomial are identical
331 < * @param p1 the first polynomial
332 < * @param p2 the second polynomial
333 < * @note this function does not compare the coefficient
334 < */
335 < template<typename ElemType>
336 < bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
328 >  /**
329 >   * Tests if two polynomial have the same exponents
330 >   * @return true if all of the exponents in these Polynomial are identical
331 >   * @param p1 the first polynomial
332 >   * @param p2 the second polynomial
333 >   * @note this function does not compare the coefficient
334 >   */
335 >  template<typename ElemType>
336 >  bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
337  
338      typename Polynomial<ElemType>::const_iterator i;
339      typename Polynomial<ElemType>::const_iterator j;
340  
341      if (p1.size() != p2.size() ) {
342 <        return false;
342 >      return false;
343      }
344      
345      for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) {
346 <        if (i->first != j->first) {
347 <            return false;
348 <        }
346 >      if (i->first != j->first) {
347 >        return false;
348 >      }
349      }
350  
351      return true;
352 < }
352 >  }
353  
354 < typedef Polynomial<double> DoublePolynomial;
354 >  typedef Polynomial<RealType> DoublePolynomial;
355  
356   } //end namespace oopse
357   #endif //MATH_POLYNOMIAL_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines