ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/Polynomial.hpp
Revision: 1290
Committed: Wed Sep 10 19:51:45 2008 UTC (16 years, 7 months ago) by cli2
Original Path: trunk/src/math/Polynomial.hpp
File size: 11114 byte(s)
Log Message:
Inversion fixes and amber mostly working

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file Polynomial.hpp
44     * @author teng lin
45     * @date 11/16/2004
46     * @version 1.0
47     */
48    
49     #ifndef MATH_POLYNOMIAL_HPP
50     #define MATH_POLYNOMIAL_HPP
51    
52     #include <iostream>
53     #include <list>
54     #include <map>
55     #include <utility>
56 tim 963 #include "config.h"
57 gezelter 246 namespace oopse {
58    
59 gezelter 507 template<typename ElemType> ElemType pow(ElemType x, int N) {
60 gezelter 246 ElemType result(1);
61    
62     for (int i = 0; i < N; ++i) {
63 gezelter 507 result *= x;
64 gezelter 246 }
65    
66     return result;
67 gezelter 507 }
68 gezelter 246
69 gezelter 507 /**
70     * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
71     * A generic Polynomial class
72     */
73     template<typename ElemType>
74     class Polynomial {
75 gezelter 246
76 gezelter 507 public:
77 tim 749 typedef Polynomial<ElemType> PolynomialType;
78 gezelter 507 typedef int ExponentType;
79     typedef ElemType CoefficientType;
80     typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
81     typedef typename PolynomialPairMap::iterator iterator;
82     typedef typename PolynomialPairMap::const_iterator const_iterator;
83 tim 749
84     Polynomial() {}
85     Polynomial(ElemType v) {setCoefficient(0, v);}
86 gezelter 507 /**
87     * Calculates the value of this Polynomial evaluated at the given x value.
88     * @return The value of this Polynomial evaluates at the given x value
89     * @param x the value of the independent variable for this Polynomial function
90     */
91     ElemType evaluate(const ElemType& x) {
92     ElemType result = ElemType();
93     ExponentType exponent;
94     CoefficientType coefficient;
95 gezelter 246
96 gezelter 507 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
97     exponent = i->first;
98     coefficient = i->second;
99     result += pow(x, exponent) * coefficient;
100     }
101 gezelter 246
102 gezelter 507 return result;
103     }
104 gezelter 246
105 gezelter 507 /**
106     * Returns the first derivative of this polynomial.
107     * @return the first derivative of this polynomial
108     * @param x
109     */
110     ElemType evaluateDerivative(const ElemType& x) {
111     ElemType result = ElemType();
112     ExponentType exponent;
113     CoefficientType coefficient;
114 gezelter 246
115 gezelter 507 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
116     exponent = i->first;
117     coefficient = i->second;
118     result += pow(x, exponent - 1) * coefficient * exponent;
119     }
120 gezelter 246
121 gezelter 507 return result;
122     }
123 gezelter 246
124 gezelter 507 /**
125     * Set the coefficent of the specified exponent, if the coefficient is already there, it
126     * will be overwritten.
127     * @param exponent exponent of a term in this Polynomial
128     * @param coefficient multiplier of a term in this Polynomial
129     */
130 gezelter 246
131 gezelter 507 void setCoefficient(int exponent, const ElemType& coefficient) {
132 cli2 1290 polyPairMap_[exponent] = coefficient;
133 gezelter 507 }
134 gezelter 246
135 gezelter 507 /**
136     * Set the coefficent of the specified exponent. If the coefficient is already there, just add the
137     * new coefficient to the old one, otherwise, just call setCoefficent
138     * @param exponent exponent of a term in this Polynomial
139     * @param coefficient multiplier of a term in this Polynomial
140     */
141 gezelter 246
142 gezelter 507 void addCoefficient(int exponent, const ElemType& coefficient) {
143     iterator i = polyPairMap_.find(exponent);
144 gezelter 246
145 gezelter 507 if (i != end()) {
146     i->second += coefficient;
147     } else {
148     setCoefficient(exponent, coefficient);
149     }
150     }
151 gezelter 246
152 gezelter 507 /**
153     * Returns the coefficient associated with the given power for this Polynomial.
154     * @return the coefficient associated with the given power for this Polynomial
155     * @exponent exponent of any term in this Polynomial
156     */
157     ElemType getCoefficient(ExponentType exponent) {
158     iterator i = polyPairMap_.find(exponent);
159 gezelter 246
160 gezelter 507 if (i != end()) {
161     return i->second;
162     } else {
163     return ElemType(0);
164     }
165     }
166 gezelter 246
167 gezelter 507 iterator begin() {
168     return polyPairMap_.begin();
169     }
170 gezelter 246
171 gezelter 507 const_iterator begin() const{
172     return polyPairMap_.begin();
173     }
174 gezelter 246
175 gezelter 507 iterator end() {
176     return polyPairMap_.end();
177     }
178 gezelter 246
179 gezelter 507 const_iterator end() const{
180     return polyPairMap_.end();
181     }
182 gezelter 246
183 gezelter 507 iterator find(ExponentType exponent) {
184     return polyPairMap_.find(exponent);
185     }
186 gezelter 246
187 gezelter 507 size_t size() {
188     return polyPairMap_.size();
189     }
190 tim 749
191 cpuglis 1230 PolynomialType& operator = (const PolynomialType& p) {
192    
193     if (this != &p) // protect against invalid self-assignment
194     {
195     typename Polynomial<ElemType>::const_iterator i;
196    
197     polyPairMap_.clear(); // clear out the old map
198    
199     for (i = p.begin(); i != p.end(); ++i) {
200     this->setCoefficient(i->first, i->second);
201     }
202     }
203     // by convention, always return *this
204     return *this;
205     }
206    
207 tim 749 PolynomialType& operator += (const PolynomialType& p) {
208     typename Polynomial<ElemType>::const_iterator i;
209    
210     for (i = p.begin(); i != p.end(); ++i) {
211     this->addCoefficient(i->first, i->second);
212     }
213    
214     return *this;
215     }
216    
217     PolynomialType& operator -= (const PolynomialType& p) {
218     typename Polynomial<ElemType>::const_iterator i;
219     for (i = p.begin(); i != p.end(); ++i) {
220     this->addCoefficient(i->first, -i->second);
221     }
222 gezelter 877 return *this;
223 tim 749 }
224    
225     PolynomialType& operator *= (const PolynomialType& p) {
226     typename Polynomial<ElemType>::const_iterator i;
227     typename Polynomial<ElemType>::const_iterator j;
228 cli2 1290 Polynomial<ElemType> p2(*this);
229    
230     polyPairMap_.clear(); // clear out old map
231     for (i = p2.begin(); i !=p2.end(); ++i) {
232 tim 749 for (j = p.begin(); j !=p.end(); ++j) {
233     this->addCoefficient( i->first + j->first, i->second * j->second);
234     }
235     }
236 cli2 1290 return *this;
237     }
238 tim 749
239 cli2 1290 //PolynomialType& operator *= (const ElemType v)
240     PolynomialType& operator *= (const ElemType v) {
241     typename Polynomial<ElemType>::const_iterator i;
242     //Polynomial<ElemType> result;
243    
244     for (i = this->begin(); i != this->end(); ++i) {
245     this->setCoefficient( i->first, i->second*v);
246     }
247    
248 tim 749 return *this;
249     }
250    
251 cli2 1290 PolynomialType& operator += (const ElemType v) {
252     this->addCoefficient( 0, v);
253     return *this;
254     }
255 tim 749
256 gezelter 507 private:
257 gezelter 246
258 gezelter 507 PolynomialPairMap polyPairMap_;
259     };
260 gezelter 246
261    
262 gezelter 507 /**
263     * Generates and returns the product of two given Polynomials.
264     * @return A Polynomial containing the product of the two given Polynomial parameters
265     */
266     template<typename ElemType>
267     Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
268 gezelter 246 typename Polynomial<ElemType>::const_iterator i;
269     typename Polynomial<ElemType>::const_iterator j;
270     Polynomial<ElemType> p;
271    
272     for (i = p1.begin(); i !=p1.end(); ++i) {
273 gezelter 507 for (j = p2.begin(); j !=p2.end(); ++j) {
274     p.addCoefficient( i->first + j->first, i->second * j->second);
275     }
276 gezelter 246 }
277    
278     return p;
279 gezelter 507 }
280 gezelter 246
281 tim 876 template<typename ElemType>
282     Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
283     typename Polynomial<ElemType>::const_iterator i;
284     Polynomial<ElemType> result;
285    
286     for (i = p.begin(); i !=p.end(); ++i) {
287 cli2 1290 result.setCoefficient( i->first , i->second * v);
288 tim 876 }
289    
290     return result;
291     }
292    
293     template<typename ElemType>
294     Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
295     typename Polynomial<ElemType>::const_iterator i;
296     Polynomial<ElemType> result;
297    
298     for (i = p.begin(); i !=p.end(); ++i) {
299 cli2 1290 result.setCoefficient( i->first , i->second * v);
300 tim 876 }
301    
302     return result;
303     }
304    
305 gezelter 507 /**
306     * Generates and returns the sum of two given Polynomials.
307     * @param p1 the first polynomial
308     * @param p2 the second polynomial
309     */
310     template<typename ElemType>
311     Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
312 gezelter 246 Polynomial<ElemType> p(p1);
313    
314     typename Polynomial<ElemType>::const_iterator i;
315    
316     for (i = p2.begin(); i != p2.end(); ++i) {
317 gezelter 507 p.addCoefficient(i->first, i->second);
318 gezelter 246 }
319    
320     return p;
321    
322 gezelter 507 }
323 gezelter 246
324 gezelter 507 /**
325     * Generates and returns the difference of two given Polynomials.
326     * @return
327     * @param p1 the first polynomial
328     * @param p2 the second polynomial
329     */
330     template<typename ElemType>
331     Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
332 gezelter 246 Polynomial<ElemType> p(p1);
333    
334     typename Polynomial<ElemType>::const_iterator i;
335    
336     for (i = p2.begin(); i != p2.end(); ++i) {
337 gezelter 507 p.addCoefficient(i->first, -i->second);
338 gezelter 246 }
339    
340     return p;
341    
342 gezelter 507 }
343 gezelter 246
344 gezelter 507 /**
345     * Tests if two polynomial have the same exponents
346 tim 883 * @return true if all of the exponents in these Polynomial are identical
347 gezelter 507 * @param p1 the first polynomial
348     * @param p2 the second polynomial
349     * @note this function does not compare the coefficient
350     */
351     template<typename ElemType>
352     bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
353 gezelter 246
354     typename Polynomial<ElemType>::const_iterator i;
355     typename Polynomial<ElemType>::const_iterator j;
356    
357     if (p1.size() != p2.size() ) {
358 gezelter 507 return false;
359 gezelter 246 }
360    
361     for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) {
362 gezelter 507 if (i->first != j->first) {
363     return false;
364     }
365 gezelter 246 }
366    
367     return true;
368 gezelter 507 }
369 gezelter 246
370 tim 963 typedef Polynomial<RealType> DoublePolynomial;
371 gezelter 246
372     } //end namespace oopse
373     #endif //MATH_POLYNOMIAL_HPP

Properties

Name Value
svn:executable *