1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <math.h> |
44 |
#include <stdlib.h> |
45 |
#include "math/MatVec3.h" |
46 |
|
47 |
/* |
48 |
* Contains various utilities for dealing with 3x3 matrices and |
49 |
* length 3 vectors |
50 |
*/ |
51 |
|
52 |
void identityMat3(RealType A[3][3]) { |
53 |
int i; |
54 |
for (i = 0; i < 3; i++) { |
55 |
A[i][0] = A[i][1] = A[i][2] = 0.0; |
56 |
A[i][i] = 1.0; |
57 |
} |
58 |
} |
59 |
|
60 |
void swapVectors3(RealType v1[3], RealType v2[3]) { |
61 |
int i; |
62 |
for (i = 0; i < 3; i++) { |
63 |
RealType tmp = v1[i]; |
64 |
v1[i] = v2[i]; |
65 |
v2[i] = tmp; |
66 |
} |
67 |
} |
68 |
|
69 |
RealType normalize3(RealType x[3]) { |
70 |
RealType den; |
71 |
int i; |
72 |
if ( (den = norm3(x)) != 0.0 ) { |
73 |
for (i=0; i < 3; i++) |
74 |
{ |
75 |
x[i] /= den; |
76 |
} |
77 |
} |
78 |
return den; |
79 |
} |
80 |
|
81 |
void matMul3(RealType a[3][3], RealType b[3][3], RealType c[3][3]) { |
82 |
RealType r00, r01, r02, r10, r11, r12, r20, r21, r22; |
83 |
|
84 |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
85 |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
86 |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
87 |
|
88 |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
89 |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
90 |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
91 |
|
92 |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
93 |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
94 |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
95 |
|
96 |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
97 |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
98 |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
99 |
} |
100 |
|
101 |
void matVecMul3(RealType m[3][3], RealType inVec[3], RealType outVec[3]) { |
102 |
RealType a0, a1, a2; |
103 |
|
104 |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
105 |
|
106 |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
107 |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
108 |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
109 |
} |
110 |
|
111 |
RealType matDet3(RealType a[3][3]) { |
112 |
int i, j, k; |
113 |
RealType determinant; |
114 |
|
115 |
determinant = 0.0; |
116 |
|
117 |
for(i = 0; i < 3; i++) { |
118 |
j = (i+1)%3; |
119 |
k = (i+2)%3; |
120 |
|
121 |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
122 |
} |
123 |
|
124 |
return determinant; |
125 |
} |
126 |
|
127 |
void invertMat3(RealType a[3][3], RealType b[3][3]) { |
128 |
|
129 |
int i, j, k, l, m, n; |
130 |
RealType determinant; |
131 |
|
132 |
determinant = matDet3( a ); |
133 |
|
134 |
if (determinant == 0.0) { |
135 |
sprintf( painCave.errMsg, |
136 |
"Can't invert a matrix with a zero determinant!\n"); |
137 |
painCave.isFatal = 1; |
138 |
simError(); |
139 |
} |
140 |
|
141 |
for (i=0; i < 3; i++) { |
142 |
j = (i+1)%3; |
143 |
k = (i+2)%3; |
144 |
for(l = 0; l < 3; l++) { |
145 |
m = (l+1)%3; |
146 |
n = (l+2)%3; |
147 |
|
148 |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
149 |
} |
150 |
} |
151 |
} |
152 |
|
153 |
void transposeMat3(RealType in[3][3], RealType out[3][3]) { |
154 |
RealType temp[3][3]; |
155 |
int i, j; |
156 |
|
157 |
for (i = 0; i < 3; i++) { |
158 |
for (j = 0; j < 3; j++) { |
159 |
temp[j][i] = in[i][j]; |
160 |
} |
161 |
} |
162 |
for (i = 0; i < 3; i++) { |
163 |
for (j = 0; j < 3; j++) { |
164 |
out[i][j] = temp[i][j]; |
165 |
} |
166 |
} |
167 |
} |
168 |
|
169 |
void printMat3(RealType A[3][3] ){ |
170 |
|
171 |
fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n", |
172 |
A[0][0] , A[0][1] , A[0][2], |
173 |
A[1][0] , A[1][1] , A[1][2], |
174 |
A[2][0] , A[2][1] , A[2][2]) ; |
175 |
} |
176 |
|
177 |
void printMat9(RealType A[9] ){ |
178 |
|
179 |
fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n", |
180 |
A[0], A[1], A[2], |
181 |
A[3], A[4], A[5], |
182 |
A[6], A[7], A[8]); |
183 |
} |
184 |
|
185 |
RealType matTrace3(RealType m[3][3]){ |
186 |
RealType trace; |
187 |
trace = m[0][0] + m[1][1] + m[2][2]; |
188 |
|
189 |
return trace; |
190 |
} |
191 |
|
192 |
void crossProduct3(RealType a[3],RealType b[3], RealType out[3]){ |
193 |
|
194 |
out[0] = a[1] * b[2] - a[2] * b[1]; |
195 |
out[1] = a[2] * b[0] - a[0] * b[2] ; |
196 |
out[2] = a[0] * b[1] - a[1] * b[0]; |
197 |
|
198 |
} |
199 |
|
200 |
RealType dotProduct3(RealType a[3], RealType b[3]){ |
201 |
return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2]; |
202 |
} |
203 |
|
204 |
/*----------------------------------------------------------------------------*/ |
205 |
/* Extract the eigenvalues and eigenvectors from a 3x3 matrix.*/ |
206 |
/* The eigenvectors (the columns of V) will be normalized. */ |
207 |
/* The eigenvectors are aligned optimally with the x, y, and z*/ |
208 |
/* axes respectively.*/ |
209 |
|
210 |
void diagonalize3x3(const RealType A[3][3], RealType w[3], RealType V[3][3]) { |
211 |
int i,j,k,maxI; |
212 |
RealType tmp, maxVal; |
213 |
|
214 |
/* do the matrix[3][3] to **matrix conversion for Jacobi*/ |
215 |
RealType C[3][3]; |
216 |
RealType *ATemp[3],*VTemp[3]; |
217 |
for (i = 0; i < 3; i++) |
218 |
{ |
219 |
C[i][0] = A[i][0]; |
220 |
C[i][1] = A[i][1]; |
221 |
C[i][2] = A[i][2]; |
222 |
ATemp[i] = C[i]; |
223 |
VTemp[i] = V[i]; |
224 |
} |
225 |
|
226 |
/* diagonalize using Jacobi*/ |
227 |
JacobiN(ATemp,3,w,VTemp); |
228 |
|
229 |
/* if all the eigenvalues are the same, return identity matrix*/ |
230 |
if (w[0] == w[1] && w[0] == w[2]) |
231 |
{ |
232 |
identityMat3(V); |
233 |
return; |
234 |
} |
235 |
|
236 |
/* transpose temporarily, it makes it easier to sort the eigenvectors*/ |
237 |
transposeMat3(V,V); |
238 |
|
239 |
/* if two eigenvalues are the same, re-orthogonalize to optimally line*/ |
240 |
/* up the eigenvectors with the x, y, and z axes*/ |
241 |
for (i = 0; i < 3; i++) |
242 |
{ |
243 |
if (w[(i+1)%3] == w[(i+2)%3]) /* two eigenvalues are the same*/ |
244 |
{ |
245 |
/* find maximum element of the independant eigenvector*/ |
246 |
maxVal = fabs(V[i][0]); |
247 |
maxI = 0; |
248 |
for (j = 1; j < 3; j++) |
249 |
{ |
250 |
if (maxVal < (tmp = fabs(V[i][j]))) |
251 |
{ |
252 |
maxVal = tmp; |
253 |
maxI = j; |
254 |
} |
255 |
} |
256 |
/* swap the eigenvector into its proper position*/ |
257 |
if (maxI != i) |
258 |
{ |
259 |
tmp = w[maxI]; |
260 |
w[maxI] = w[i]; |
261 |
w[i] = tmp; |
262 |
swapVectors3(V[i],V[maxI]); |
263 |
} |
264 |
/* maximum element of eigenvector should be positive*/ |
265 |
if (V[maxI][maxI] < 0) |
266 |
{ |
267 |
V[maxI][0] = -V[maxI][0]; |
268 |
V[maxI][1] = -V[maxI][1]; |
269 |
V[maxI][2] = -V[maxI][2]; |
270 |
} |
271 |
|
272 |
/* re-orthogonalize the other two eigenvectors*/ |
273 |
j = (maxI+1)%3; |
274 |
k = (maxI+2)%3; |
275 |
|
276 |
V[j][0] = 0.0; |
277 |
V[j][1] = 0.0; |
278 |
V[j][2] = 0.0; |
279 |
V[j][j] = 1.0; |
280 |
crossProduct3(V[maxI],V[j],V[k]); |
281 |
normalize3(V[k]); |
282 |
crossProduct3(V[k],V[maxI],V[j]); |
283 |
|
284 |
/* transpose vectors back to columns*/ |
285 |
transposeMat3(V,V); |
286 |
return; |
287 |
} |
288 |
} |
289 |
|
290 |
/* the three eigenvalues are different, just sort the eigenvectors*/ |
291 |
/* to align them with the x, y, and z axes*/ |
292 |
|
293 |
/* find the vector with the largest x element, make that vector*/ |
294 |
/* the first vector*/ |
295 |
maxVal = fabs(V[0][0]); |
296 |
maxI = 0; |
297 |
for (i = 1; i < 3; i++) |
298 |
{ |
299 |
if (maxVal < (tmp = fabs(V[i][0]))) |
300 |
{ |
301 |
maxVal = tmp; |
302 |
maxI = i; |
303 |
} |
304 |
} |
305 |
/* swap eigenvalue and eigenvector*/ |
306 |
if (maxI != 0) |
307 |
{ |
308 |
tmp = w[maxI]; |
309 |
w[maxI] = w[0]; |
310 |
w[0] = tmp; |
311 |
swapVectors3(V[maxI],V[0]); |
312 |
} |
313 |
/* do the same for the y element*/ |
314 |
if (fabs(V[1][1]) < fabs(V[2][1])) |
315 |
{ |
316 |
tmp = w[2]; |
317 |
w[2] = w[1]; |
318 |
w[1] = tmp; |
319 |
swapVectors3(V[2],V[1]); |
320 |
} |
321 |
|
322 |
/* ensure that the sign of the eigenvectors is correct*/ |
323 |
for (i = 0; i < 2; i++) |
324 |
{ |
325 |
if (V[i][i] < 0) |
326 |
{ |
327 |
V[i][0] = -V[i][0]; |
328 |
V[i][1] = -V[i][1]; |
329 |
V[i][2] = -V[i][2]; |
330 |
} |
331 |
} |
332 |
/* set sign of final eigenvector to ensure that determinant is positive*/ |
333 |
if (matDet3(V) < 0) |
334 |
{ |
335 |
V[2][0] = -V[2][0]; |
336 |
V[2][1] = -V[2][1]; |
337 |
V[2][2] = -V[2][2]; |
338 |
} |
339 |
|
340 |
/* transpose the eigenvectors back again*/ |
341 |
transposeMat3(V,V); |
342 |
} |
343 |
|
344 |
|
345 |
#define MAT_ROTATE(a,i,j,k,l) g=a[i][j];h=a[k][l];a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau); |
346 |
|
347 |
#define MAX_ROTATIONS 20 |
348 |
|
349 |
/* Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn*/ |
350 |
/* real symmetric matrix. Square nxn matrix a; size of matrix in n;*/ |
351 |
/* output eigenvalues in w; and output eigenvectors in v. Resulting*/ |
352 |
/* eigenvalues/vectors are sorted in decreasing order; eigenvectors are*/ |
353 |
/* normalized.*/ |
354 |
int JacobiN(RealType **a, int n, RealType *w, RealType **v) { |
355 |
|
356 |
int i, j, k, iq, ip, numPos; |
357 |
int ceil_half_n; |
358 |
RealType tresh, theta, tau, t, sm, s, h, g, c, tmp; |
359 |
RealType bspace[4], zspace[4]; |
360 |
RealType *b = bspace; |
361 |
RealType *z = zspace; |
362 |
|
363 |
|
364 |
/* only allocate memory if the matrix is large*/ |
365 |
if (n > 4) |
366 |
{ |
367 |
b = (RealType *) calloc(n, sizeof(RealType)); |
368 |
z = (RealType *) calloc(n, sizeof(RealType)); |
369 |
} |
370 |
|
371 |
/* initialize*/ |
372 |
for (ip=0; ip<n; ip++) |
373 |
{ |
374 |
for (iq=0; iq<n; iq++) |
375 |
{ |
376 |
v[ip][iq] = 0.0; |
377 |
} |
378 |
v[ip][ip] = 1.0; |
379 |
} |
380 |
for (ip=0; ip<n; ip++) |
381 |
{ |
382 |
b[ip] = w[ip] = a[ip][ip]; |
383 |
z[ip] = 0.0; |
384 |
} |
385 |
|
386 |
/* begin rotation sequence*/ |
387 |
for (i=0; i<MAX_ROTATIONS; i++) |
388 |
{ |
389 |
sm = 0.0; |
390 |
for (ip=0; ip<n-1; ip++) |
391 |
{ |
392 |
for (iq=ip+1; iq<n; iq++) |
393 |
{ |
394 |
sm += fabs(a[ip][iq]); |
395 |
} |
396 |
} |
397 |
if (sm == 0.0) |
398 |
{ |
399 |
break; |
400 |
} |
401 |
|
402 |
if (i < 3) /* first 3 sweeps*/ |
403 |
{ |
404 |
tresh = 0.2*sm/(n*n); |
405 |
} |
406 |
else |
407 |
{ |
408 |
tresh = 0.0; |
409 |
} |
410 |
|
411 |
for (ip=0; ip<n-1; ip++) |
412 |
{ |
413 |
for (iq=ip+1; iq<n; iq++) |
414 |
{ |
415 |
g = 100.0*fabs(a[ip][iq]); |
416 |
|
417 |
/* after 4 sweeps*/ |
418 |
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
419 |
&& (fabs(w[iq])+g) == fabs(w[iq])) |
420 |
{ |
421 |
a[ip][iq] = 0.0; |
422 |
} |
423 |
else if (fabs(a[ip][iq]) > tresh) |
424 |
{ |
425 |
h = w[iq] - w[ip]; |
426 |
if ( (fabs(h)+g) == fabs(h)) |
427 |
{ |
428 |
t = (a[ip][iq]) / h; |
429 |
} |
430 |
else |
431 |
{ |
432 |
theta = 0.5*h / (a[ip][iq]); |
433 |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
434 |
if (theta < 0.0) |
435 |
{ |
436 |
t = -t; |
437 |
} |
438 |
} |
439 |
c = 1.0 / sqrt(1+t*t); |
440 |
s = t*c; |
441 |
tau = s/(1.0+c); |
442 |
h = t*a[ip][iq]; |
443 |
z[ip] -= h; |
444 |
z[iq] += h; |
445 |
w[ip] -= h; |
446 |
w[iq] += h; |
447 |
a[ip][iq]=0.0; |
448 |
|
449 |
/* ip already shifted left by 1 unit*/ |
450 |
for (j = 0;j <= ip-1;j++) |
451 |
{ |
452 |
MAT_ROTATE(a,j,ip,j,iq) |
453 |
} |
454 |
/* ip and iq already shifted left by 1 unit*/ |
455 |
for (j = ip+1;j <= iq-1;j++) |
456 |
{ |
457 |
MAT_ROTATE(a,ip,j,j,iq) |
458 |
} |
459 |
/* iq already shifted left by 1 unit*/ |
460 |
for (j=iq+1; j<n; j++) |
461 |
{ |
462 |
MAT_ROTATE(a,ip,j,iq,j) |
463 |
} |
464 |
for (j=0; j<n; j++) |
465 |
{ |
466 |
MAT_ROTATE(v,j,ip,j,iq) |
467 |
} |
468 |
} |
469 |
} |
470 |
} |
471 |
|
472 |
for (ip=0; ip<n; ip++) |
473 |
{ |
474 |
b[ip] += z[ip]; |
475 |
w[ip] = b[ip]; |
476 |
z[ip] = 0.0; |
477 |
} |
478 |
} |
479 |
|
480 |
/*// this is NEVER called*/ |
481 |
if ( i >= MAX_ROTATIONS ) |
482 |
{ |
483 |
sprintf( painCave.errMsg, |
484 |
"Jacobi: Error extracting eigenfunctions!\n"); |
485 |
painCave.isFatal = 1; |
486 |
simError(); |
487 |
return 0; |
488 |
} |
489 |
|
490 |
/* sort eigenfunctions these changes do not affect accuracy */ |
491 |
for (j=0; j<n-1; j++) /* boundary incorrect*/ |
492 |
{ |
493 |
k = j; |
494 |
tmp = w[k]; |
495 |
for (i=j+1; i<n; i++) /* boundary incorrect, shifted already*/ |
496 |
{ |
497 |
if (w[i] >= tmp) /* why exchage if same?*/ |
498 |
{ |
499 |
k = i; |
500 |
tmp = w[k]; |
501 |
} |
502 |
} |
503 |
if (k != j) |
504 |
{ |
505 |
w[k] = w[j]; |
506 |
w[j] = tmp; |
507 |
for (i=0; i<n; i++) |
508 |
{ |
509 |
tmp = v[i][j]; |
510 |
v[i][j] = v[i][k]; |
511 |
v[i][k] = tmp; |
512 |
} |
513 |
} |
514 |
} |
515 |
/* insure eigenvector consistency (i.e., Jacobi can compute vectors that*/ |
516 |
/* are negative of one another (.707,.707,0) and (-.707,-.707,0). This can*/ |
517 |
/* reek havoc in hyperstreamline/other stuff. We will select the most*/ |
518 |
/* positive eigenvector.*/ |
519 |
ceil_half_n = (n >> 1) + (n & 1); |
520 |
for (j=0; j<n; j++) |
521 |
{ |
522 |
for (numPos=0, i=0; i<n; i++) |
523 |
{ |
524 |
if ( v[i][j] >= 0.0 ) |
525 |
{ |
526 |
numPos++; |
527 |
} |
528 |
} |
529 |
/* if ( numPos < ceil(RealType(n)/RealType(2.0)) )*/ |
530 |
if ( numPos < ceil_half_n) |
531 |
{ |
532 |
for(i=0; i<n; i++) |
533 |
{ |
534 |
v[i][j] *= -1.0; |
535 |
} |
536 |
} |
537 |
} |
538 |
|
539 |
if (n > 4) |
540 |
{ |
541 |
free(b); |
542 |
free(z); |
543 |
} |
544 |
return 1; |
545 |
} |
546 |
|
547 |
#undef MAT_ROTATE |
548 |
#undef MAX_ROTATIONS |