1 |
+ |
/* |
2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
+ |
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
+ |
*/ |
41 |
+ |
|
42 |
|
#include <stdio.h> |
43 |
|
#include <math.h> |
44 |
|
#include <stdlib.h> |
49 |
|
* length 3 vectors |
50 |
|
*/ |
51 |
|
|
52 |
< |
void identityMat3(double A[3][3]) { |
52 |
> |
void identityMat3(RealType A[3][3]) { |
53 |
|
int i; |
54 |
|
for (i = 0; i < 3; i++) { |
55 |
|
A[i][0] = A[i][1] = A[i][2] = 0.0; |
57 |
|
} |
58 |
|
} |
59 |
|
|
60 |
< |
void swapVectors3(double v1[3], double v2[3]) { |
60 |
> |
void swapVectors3(RealType v1[3], RealType v2[3]) { |
61 |
|
int i; |
62 |
|
for (i = 0; i < 3; i++) { |
63 |
< |
double tmp = v1[i]; |
63 |
> |
RealType tmp = v1[i]; |
64 |
|
v1[i] = v2[i]; |
65 |
|
v2[i] = tmp; |
66 |
|
} |
67 |
|
} |
68 |
|
|
69 |
< |
double normalize3(double x[3]) { |
70 |
< |
double den; |
69 |
> |
RealType normalize3(RealType x[3]) { |
70 |
> |
RealType den; |
71 |
|
int i; |
72 |
|
if ( (den = norm3(x)) != 0.0 ) { |
73 |
|
for (i=0; i < 3; i++) |
78 |
|
return den; |
79 |
|
} |
80 |
|
|
81 |
< |
void matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
82 |
< |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
81 |
> |
void matMul3(RealType a[3][3], RealType b[3][3], RealType c[3][3]) { |
82 |
> |
RealType r00, r01, r02, r10, r11, r12, r20, r21, r22; |
83 |
|
|
84 |
|
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
85 |
|
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
98 |
|
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
99 |
|
} |
100 |
|
|
101 |
< |
void matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
102 |
< |
double a0, a1, a2; |
101 |
> |
void matVecMul3(RealType m[3][3], RealType inVec[3], RealType outVec[3]) { |
102 |
> |
RealType a0, a1, a2; |
103 |
|
|
104 |
|
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
105 |
|
|
108 |
|
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
109 |
|
} |
110 |
|
|
111 |
< |
double matDet3(double a[3][3]) { |
111 |
> |
RealType matDet3(RealType a[3][3]) { |
112 |
|
int i, j, k; |
113 |
< |
double determinant; |
113 |
> |
RealType determinant; |
114 |
|
|
115 |
|
determinant = 0.0; |
116 |
|
|
124 |
|
return determinant; |
125 |
|
} |
126 |
|
|
127 |
< |
void invertMat3(double a[3][3], double b[3][3]) { |
127 |
> |
void invertMat3(RealType a[3][3], RealType b[3][3]) { |
128 |
|
|
129 |
|
int i, j, k, l, m, n; |
130 |
< |
double determinant; |
130 |
> |
RealType determinant; |
131 |
|
|
132 |
|
determinant = matDet3( a ); |
133 |
|
|
150 |
|
} |
151 |
|
} |
152 |
|
|
153 |
< |
void transposeMat3(double in[3][3], double out[3][3]) { |
154 |
< |
double temp[3][3]; |
153 |
> |
void transposeMat3(RealType in[3][3], RealType out[3][3]) { |
154 |
> |
RealType temp[3][3]; |
155 |
|
int i, j; |
156 |
|
|
157 |
|
for (i = 0; i < 3; i++) { |
166 |
|
} |
167 |
|
} |
168 |
|
|
169 |
< |
void printMat3(double A[3][3] ){ |
169 |
> |
void printMat3(RealType A[3][3] ){ |
170 |
|
|
171 |
|
fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n", |
172 |
|
A[0][0] , A[0][1] , A[0][2], |
174 |
|
A[2][0] , A[2][1] , A[2][2]) ; |
175 |
|
} |
176 |
|
|
177 |
< |
void printMat9(double A[9] ){ |
177 |
> |
void printMat9(RealType A[9] ){ |
178 |
|
|
179 |
|
fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n", |
180 |
|
A[0], A[1], A[2], |
182 |
|
A[6], A[7], A[8]); |
183 |
|
} |
184 |
|
|
185 |
< |
double matTrace3(double m[3][3]){ |
186 |
< |
double trace; |
185 |
> |
RealType matTrace3(RealType m[3][3]){ |
186 |
> |
RealType trace; |
187 |
|
trace = m[0][0] + m[1][1] + m[2][2]; |
188 |
|
|
189 |
|
return trace; |
190 |
|
} |
191 |
|
|
192 |
< |
void crossProduct3(double a[3],double b[3], double out[3]){ |
192 |
> |
void crossProduct3(RealType a[3],RealType b[3], RealType out[3]){ |
193 |
|
|
194 |
|
out[0] = a[1] * b[2] - a[2] * b[1]; |
195 |
|
out[1] = a[2] * b[0] - a[0] * b[2] ; |
197 |
|
|
198 |
|
} |
199 |
|
|
200 |
< |
double dotProduct3(double a[3], double b[3]){ |
200 |
> |
RealType dotProduct3(RealType a[3], RealType b[3]){ |
201 |
|
return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2]; |
202 |
|
} |
203 |
|
|
204 |
< |
//---------------------------------------------------------------------------- |
205 |
< |
// Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
206 |
< |
// The eigenvectors (the columns of V) will be normalized. |
207 |
< |
// The eigenvectors are aligned optimally with the x, y, and z |
208 |
< |
// axes respectively. |
204 |
> |
/*----------------------------------------------------------------------------*/ |
205 |
> |
/* Extract the eigenvalues and eigenvectors from a 3x3 matrix.*/ |
206 |
> |
/* The eigenvectors (the columns of V) will be normalized. */ |
207 |
> |
/* The eigenvectors are aligned optimally with the x, y, and z*/ |
208 |
> |
/* axes respectively.*/ |
209 |
|
|
210 |
< |
void diagonalize3x3(const double A[3][3], double w[3], double V[3][3]) { |
210 |
> |
void diagonalize3x3(const RealType A[3][3], RealType w[3], RealType V[3][3]) { |
211 |
|
int i,j,k,maxI; |
212 |
< |
double tmp, maxVal; |
212 |
> |
RealType tmp, maxVal; |
213 |
|
|
214 |
< |
// do the matrix[3][3] to **matrix conversion for Jacobi |
215 |
< |
double C[3][3]; |
216 |
< |
double *ATemp[3],*VTemp[3]; |
214 |
> |
/* do the matrix[3][3] to **matrix conversion for Jacobi*/ |
215 |
> |
RealType C[3][3]; |
216 |
> |
RealType *ATemp[3],*VTemp[3]; |
217 |
|
for (i = 0; i < 3; i++) |
218 |
|
{ |
219 |
|
C[i][0] = A[i][0]; |
223 |
|
VTemp[i] = V[i]; |
224 |
|
} |
225 |
|
|
226 |
< |
// diagonalize using Jacobi |
226 |
> |
/* diagonalize using Jacobi*/ |
227 |
|
JacobiN(ATemp,3,w,VTemp); |
228 |
|
|
229 |
< |
// if all the eigenvalues are the same, return identity matrix |
229 |
> |
/* if all the eigenvalues are the same, return identity matrix*/ |
230 |
|
if (w[0] == w[1] && w[0] == w[2]) |
231 |
|
{ |
232 |
|
identityMat3(V); |
233 |
|
return; |
234 |
|
} |
235 |
|
|
236 |
< |
// transpose temporarily, it makes it easier to sort the eigenvectors |
236 |
> |
/* transpose temporarily, it makes it easier to sort the eigenvectors*/ |
237 |
|
transposeMat3(V,V); |
238 |
|
|
239 |
< |
// if two eigenvalues are the same, re-orthogonalize to optimally line |
240 |
< |
// up the eigenvectors with the x, y, and z axes |
239 |
> |
/* if two eigenvalues are the same, re-orthogonalize to optimally line*/ |
240 |
> |
/* up the eigenvectors with the x, y, and z axes*/ |
241 |
|
for (i = 0; i < 3; i++) |
242 |
|
{ |
243 |
< |
if (w[(i+1)%3] == w[(i+2)%3]) // two eigenvalues are the same |
243 |
> |
if (w[(i+1)%3] == w[(i+2)%3]) /* two eigenvalues are the same*/ |
244 |
|
{ |
245 |
< |
// find maximum element of the independant eigenvector |
245 |
> |
/* find maximum element of the independant eigenvector*/ |
246 |
|
maxVal = fabs(V[i][0]); |
247 |
|
maxI = 0; |
248 |
|
for (j = 1; j < 3; j++) |
253 |
|
maxI = j; |
254 |
|
} |
255 |
|
} |
256 |
< |
// swap the eigenvector into its proper position |
256 |
> |
/* swap the eigenvector into its proper position*/ |
257 |
|
if (maxI != i) |
258 |
|
{ |
259 |
|
tmp = w[maxI]; |
261 |
|
w[i] = tmp; |
262 |
|
swapVectors3(V[i],V[maxI]); |
263 |
|
} |
264 |
< |
// maximum element of eigenvector should be positive |
264 |
> |
/* maximum element of eigenvector should be positive*/ |
265 |
|
if (V[maxI][maxI] < 0) |
266 |
|
{ |
267 |
|
V[maxI][0] = -V[maxI][0]; |
269 |
|
V[maxI][2] = -V[maxI][2]; |
270 |
|
} |
271 |
|
|
272 |
< |
// re-orthogonalize the other two eigenvectors |
272 |
> |
/* re-orthogonalize the other two eigenvectors*/ |
273 |
|
j = (maxI+1)%3; |
274 |
|
k = (maxI+2)%3; |
275 |
|
|
281 |
|
normalize3(V[k]); |
282 |
|
crossProduct3(V[k],V[maxI],V[j]); |
283 |
|
|
284 |
< |
// transpose vectors back to columns |
284 |
> |
/* transpose vectors back to columns*/ |
285 |
|
transposeMat3(V,V); |
286 |
|
return; |
287 |
|
} |
288 |
|
} |
289 |
|
|
290 |
< |
// the three eigenvalues are different, just sort the eigenvectors |
291 |
< |
// to align them with the x, y, and z axes |
290 |
> |
/* the three eigenvalues are different, just sort the eigenvectors*/ |
291 |
> |
/* to align them with the x, y, and z axes*/ |
292 |
|
|
293 |
< |
// find the vector with the largest x element, make that vector |
294 |
< |
// the first vector |
293 |
> |
/* find the vector with the largest x element, make that vector*/ |
294 |
> |
/* the first vector*/ |
295 |
|
maxVal = fabs(V[0][0]); |
296 |
|
maxI = 0; |
297 |
|
for (i = 1; i < 3; i++) |
302 |
|
maxI = i; |
303 |
|
} |
304 |
|
} |
305 |
< |
// swap eigenvalue and eigenvector |
305 |
> |
/* swap eigenvalue and eigenvector*/ |
306 |
|
if (maxI != 0) |
307 |
|
{ |
308 |
|
tmp = w[maxI]; |
310 |
|
w[0] = tmp; |
311 |
|
swapVectors3(V[maxI],V[0]); |
312 |
|
} |
313 |
< |
// do the same for the y element |
313 |
> |
/* do the same for the y element*/ |
314 |
|
if (fabs(V[1][1]) < fabs(V[2][1])) |
315 |
|
{ |
316 |
|
tmp = w[2]; |
319 |
|
swapVectors3(V[2],V[1]); |
320 |
|
} |
321 |
|
|
322 |
< |
// ensure that the sign of the eigenvectors is correct |
322 |
> |
/* ensure that the sign of the eigenvectors is correct*/ |
323 |
|
for (i = 0; i < 2; i++) |
324 |
|
{ |
325 |
|
if (V[i][i] < 0) |
329 |
|
V[i][2] = -V[i][2]; |
330 |
|
} |
331 |
|
} |
332 |
< |
// set sign of final eigenvector to ensure that determinant is positive |
332 |
> |
/* set sign of final eigenvector to ensure that determinant is positive*/ |
333 |
|
if (matDet3(V) < 0) |
334 |
|
{ |
335 |
|
V[2][0] = -V[2][0]; |
337 |
|
V[2][2] = -V[2][2]; |
338 |
|
} |
339 |
|
|
340 |
< |
// transpose the eigenvectors back again |
340 |
> |
/* transpose the eigenvectors back again*/ |
341 |
|
transposeMat3(V,V); |
342 |
|
} |
343 |
|
|
346 |
|
|
347 |
|
#define MAX_ROTATIONS 20 |
348 |
|
|
349 |
< |
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
350 |
< |
// real symmetric matrix. Square nxn matrix a; size of matrix in n; |
351 |
< |
// output eigenvalues in w; and output eigenvectors in v. Resulting |
352 |
< |
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
353 |
< |
// normalized. |
354 |
< |
int JacobiN(double **a, int n, double *w, double **v) { |
349 |
> |
/* Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn*/ |
350 |
> |
/* real symmetric matrix. Square nxn matrix a; size of matrix in n;*/ |
351 |
> |
/* output eigenvalues in w; and output eigenvectors in v. Resulting*/ |
352 |
> |
/* eigenvalues/vectors are sorted in decreasing order; eigenvectors are*/ |
353 |
> |
/* normalized.*/ |
354 |
> |
int JacobiN(RealType **a, int n, RealType *w, RealType **v) { |
355 |
|
|
356 |
|
int i, j, k, iq, ip, numPos; |
357 |
|
int ceil_half_n; |
358 |
< |
double tresh, theta, tau, t, sm, s, h, g, c, tmp; |
359 |
< |
double bspace[4], zspace[4]; |
360 |
< |
double *b = bspace; |
361 |
< |
double *z = zspace; |
358 |
> |
RealType tresh, theta, tau, t, sm, s, h, g, c, tmp; |
359 |
> |
RealType bspace[4], zspace[4]; |
360 |
> |
RealType *b = bspace; |
361 |
> |
RealType *z = zspace; |
362 |
|
|
363 |
|
|
364 |
< |
// only allocate memory if the matrix is large |
364 |
> |
/* only allocate memory if the matrix is large*/ |
365 |
|
if (n > 4) |
366 |
|
{ |
367 |
< |
b = (double *) calloc(n, sizeof(double)); |
368 |
< |
z = (double *) calloc(n, sizeof(double)); |
367 |
> |
b = (RealType *) calloc(n, sizeof(RealType)); |
368 |
> |
z = (RealType *) calloc(n, sizeof(RealType)); |
369 |
|
} |
370 |
|
|
371 |
< |
// initialize |
371 |
> |
/* initialize*/ |
372 |
|
for (ip=0; ip<n; ip++) |
373 |
|
{ |
374 |
|
for (iq=0; iq<n; iq++) |
383 |
|
z[ip] = 0.0; |
384 |
|
} |
385 |
|
|
386 |
< |
// begin rotation sequence |
386 |
> |
/* begin rotation sequence*/ |
387 |
|
for (i=0; i<MAX_ROTATIONS; i++) |
388 |
|
{ |
389 |
|
sm = 0.0; |
399 |
|
break; |
400 |
|
} |
401 |
|
|
402 |
< |
if (i < 3) // first 3 sweeps |
402 |
> |
if (i < 3) /* first 3 sweeps*/ |
403 |
|
{ |
404 |
|
tresh = 0.2*sm/(n*n); |
405 |
|
} |
414 |
|
{ |
415 |
|
g = 100.0*fabs(a[ip][iq]); |
416 |
|
|
417 |
< |
// after 4 sweeps |
417 |
> |
/* after 4 sweeps*/ |
418 |
|
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
419 |
|
&& (fabs(w[iq])+g) == fabs(w[iq])) |
420 |
|
{ |
446 |
|
w[iq] += h; |
447 |
|
a[ip][iq]=0.0; |
448 |
|
|
449 |
< |
// ip already shifted left by 1 unit |
449 |
> |
/* ip already shifted left by 1 unit*/ |
450 |
|
for (j = 0;j <= ip-1;j++) |
451 |
|
{ |
452 |
|
MAT_ROTATE(a,j,ip,j,iq) |
453 |
|
} |
454 |
< |
// ip and iq already shifted left by 1 unit |
454 |
> |
/* ip and iq already shifted left by 1 unit*/ |
455 |
|
for (j = ip+1;j <= iq-1;j++) |
456 |
|
{ |
457 |
|
MAT_ROTATE(a,ip,j,j,iq) |
458 |
|
} |
459 |
< |
// iq already shifted left by 1 unit |
459 |
> |
/* iq already shifted left by 1 unit*/ |
460 |
|
for (j=iq+1; j<n; j++) |
461 |
|
{ |
462 |
|
MAT_ROTATE(a,ip,j,iq,j) |
477 |
|
} |
478 |
|
} |
479 |
|
|
480 |
< |
//// this is NEVER called |
480 |
> |
/*// this is NEVER called*/ |
481 |
|
if ( i >= MAX_ROTATIONS ) |
482 |
|
{ |
483 |
|
sprintf( painCave.errMsg, |
487 |
|
return 0; |
488 |
|
} |
489 |
|
|
490 |
< |
// sort eigenfunctions these changes do not affect accuracy |
491 |
< |
for (j=0; j<n-1; j++) // boundary incorrect |
490 |
> |
/* sort eigenfunctions these changes do not affect accuracy */ |
491 |
> |
for (j=0; j<n-1; j++) /* boundary incorrect*/ |
492 |
|
{ |
493 |
|
k = j; |
494 |
|
tmp = w[k]; |
495 |
< |
for (i=j+1; i<n; i++) // boundary incorrect, shifted already |
495 |
> |
for (i=j+1; i<n; i++) /* boundary incorrect, shifted already*/ |
496 |
|
{ |
497 |
< |
if (w[i] >= tmp) // why exchage if same? |
497 |
> |
if (w[i] >= tmp) /* why exchage if same?*/ |
498 |
|
{ |
499 |
|
k = i; |
500 |
|
tmp = w[k]; |
512 |
|
} |
513 |
|
} |
514 |
|
} |
515 |
< |
// insure eigenvector consistency (i.e., Jacobi can compute vectors that |
516 |
< |
// are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
517 |
< |
// reek havoc in hyperstreamline/other stuff. We will select the most |
518 |
< |
// positive eigenvector. |
515 |
> |
/* insure eigenvector consistency (i.e., Jacobi can compute vectors that*/ |
516 |
> |
/* are negative of one another (.707,.707,0) and (-.707,-.707,0). This can*/ |
517 |
> |
/* reek havoc in hyperstreamline/other stuff. We will select the most*/ |
518 |
> |
/* positive eigenvector.*/ |
519 |
|
ceil_half_n = (n >> 1) + (n & 1); |
520 |
|
for (j=0; j<n; j++) |
521 |
|
{ |
526 |
|
numPos++; |
527 |
|
} |
528 |
|
} |
529 |
< |
// if ( numPos < ceil(double(n)/double(2.0)) ) |
529 |
> |
/* if ( numPos < ceil(RealType(n)/RealType(2.0)) )*/ |
530 |
|
if ( numPos < ceil_half_n) |
531 |
|
{ |
532 |
|
for(i=0; i<n; i++) |