| 47 |
|
* @version 1.0 |
| 48 |
|
*/ |
| 49 |
|
|
| 50 |
< |
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP |
| 51 |
< |
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
| 50 |
> |
#ifndef MATH_LEGENDREPOLYNOMIALS_HPP |
| 51 |
> |
#define MATH_LEGENDREPOLYNOMIALS_HPP |
| 52 |
|
|
| 53 |
|
#include <vector> |
| 54 |
|
#include <cassert> |
| 59 |
|
|
| 60 |
|
/** |
| 61 |
|
* @class LegendrePolynomial |
| 62 |
< |
* A collection of Chebyshev Polynomials. |
| 62 |
> |
* A collection of Legendre Polynomials. |
| 63 |
|
* @todo document |
| 64 |
|
*/ |
| 65 |
|
class LegendrePolynomial { |
| 67 |
|
LegendrePolynomial(int maxPower); |
| 68 |
|
virtual ~LegendrePolynomial() {} |
| 69 |
|
/** |
| 70 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
| 71 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
| 70 |
> |
* Calculates the value of the nth Legendre Polynomial evaluated at the given x value. |
| 71 |
> |
* @return The value of the nth Legendre Polynomial evaluates at the given x value |
| 72 |
|
* @param n |
| 73 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 73 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
| 74 |
|
*/ |
| 75 |
|
|
| 76 |
|
RealType evaluate(int n, RealType x) { |
| 79 |
|
} |
| 80 |
|
|
| 81 |
|
/** |
| 82 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
| 83 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
| 82 |
> |
* Returns the first derivative of the nth Legendre Polynomial. |
| 83 |
> |
* @return the first derivative of the nth Legendre Polynomial |
| 84 |
|
* @param n |
| 85 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
| 85 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
| 86 |
|
*/ |
| 87 |
|
RealType evaluateDerivative(int n, RealType x) { |
| 88 |
|
assert (n <= maxPower_ && n >=0); |
| 90 |
|
} |
| 91 |
|
|
| 92 |
|
/** |
| 93 |
< |
* Returns the nth Chebyshev Polynomial |
| 94 |
< |
* @return the nth Chebyshev Polynomial |
| 93 |
> |
* Returns the nth Legendre Polynomial |
| 94 |
> |
* @return the nth Legendre Polynomial |
| 95 |
|
* @param n |
| 96 |
|
*/ |
| 97 |
|
const DoublePolynomial& getLegendrePolynomial(int n) const { |
| 112 |
|
}; |
| 113 |
|
|
| 114 |
|
|
| 115 |
< |
} //end namespace OpenMD |
| 116 |
< |
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |
| 115 |
> |
} |
| 116 |
> |
#endif |
| 117 |
|
|