6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
50 |
< |
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP |
51 |
< |
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
50 |
> |
#ifndef MATH_LEGENDREPOLYNOMIALS_HPP |
51 |
> |
#define MATH_LEGENDREPOLYNOMIALS_HPP |
52 |
|
|
53 |
|
#include <vector> |
54 |
|
#include <cassert> |
55 |
|
|
56 |
|
#include "math/Polynomial.hpp" |
57 |
|
|
58 |
< |
namespace oopse { |
58 |
> |
namespace OpenMD { |
59 |
|
|
60 |
|
/** |
61 |
|
* @class LegendrePolynomial |
62 |
< |
* A collection of Chebyshev Polynomials. |
62 |
> |
* A collection of Legendre Polynomials. |
63 |
|
* @todo document |
64 |
|
*/ |
65 |
|
class LegendrePolynomial { |
67 |
|
LegendrePolynomial(int maxPower); |
68 |
|
virtual ~LegendrePolynomial() {} |
69 |
|
/** |
70 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
71 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
70 |
> |
* Calculates the value of the nth Legendre Polynomial evaluated at the given x value. |
71 |
> |
* @return The value of the nth Legendre Polynomial evaluates at the given x value |
72 |
|
* @param n |
73 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
74 |
|
*/ |
75 |
|
|
76 |
< |
double evaluate(int n, double x) { |
76 |
> |
RealType evaluate(int n, RealType x) { |
77 |
|
assert (n <= maxPower_ && n >=0); |
78 |
|
return polyList_[n].evaluate(x); |
79 |
|
} |
80 |
|
|
81 |
|
/** |
82 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
83 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
82 |
> |
* Returns the first derivative of the nth Legendre Polynomial. |
83 |
> |
* @return the first derivative of the nth Legendre Polynomial |
84 |
|
* @param n |
85 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
86 |
|
*/ |
87 |
< |
double evaluateDerivative(int n, double x) { |
87 |
> |
RealType evaluateDerivative(int n, RealType x) { |
88 |
|
assert (n <= maxPower_ && n >=0); |
89 |
|
return polyList_[n].evaluateDerivative(x); |
90 |
|
} |
91 |
|
|
92 |
|
/** |
93 |
< |
* Returns the nth Chebyshev Polynomial |
94 |
< |
* @return the nth Chebyshev Polynomial |
93 |
> |
* Returns the nth Legendre Polynomial |
94 |
> |
* @return the nth Legendre Polynomial |
95 |
|
* @param n |
96 |
|
*/ |
97 |
|
const DoublePolynomial& getLegendrePolynomial(int n) const { |
112 |
|
}; |
113 |
|
|
114 |
|
|
115 |
< |
} //end namespace oopse |
116 |
< |
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |
115 |
> |
} |
116 |
> |
#endif |
117 |
|
|