36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
50 |
< |
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP |
51 |
< |
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
50 |
> |
#ifndef MATH_LEGENDREPOLYNOMIALS_HPP |
51 |
> |
#define MATH_LEGENDREPOLYNOMIALS_HPP |
52 |
|
|
53 |
|
#include <vector> |
54 |
|
#include <cassert> |
59 |
|
|
60 |
|
/** |
61 |
|
* @class LegendrePolynomial |
62 |
< |
* A collection of Chebyshev Polynomials. |
62 |
> |
* A collection of Legendre Polynomials. |
63 |
|
* @todo document |
64 |
|
*/ |
65 |
|
class LegendrePolynomial { |
67 |
|
LegendrePolynomial(int maxPower); |
68 |
|
virtual ~LegendrePolynomial() {} |
69 |
|
/** |
70 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
71 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
70 |
> |
* Calculates the value of the nth Legendre Polynomial evaluated at the given x value. |
71 |
> |
* @return The value of the nth Legendre Polynomial evaluates at the given x value |
72 |
|
* @param n |
73 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
74 |
|
*/ |
75 |
|
|
76 |
|
RealType evaluate(int n, RealType x) { |
79 |
|
} |
80 |
|
|
81 |
|
/** |
82 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
83 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
82 |
> |
* Returns the first derivative of the nth Legendre Polynomial. |
83 |
> |
* @return the first derivative of the nth Legendre Polynomial |
84 |
|
* @param n |
85 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
> |
* @param x the value of the independent variable for the nth Legendre Polynomial function |
86 |
|
*/ |
87 |
|
RealType evaluateDerivative(int n, RealType x) { |
88 |
|
assert (n <= maxPower_ && n >=0); |
90 |
|
} |
91 |
|
|
92 |
|
/** |
93 |
< |
* Returns the nth Chebyshev Polynomial |
94 |
< |
* @return the nth Chebyshev Polynomial |
93 |
> |
* Returns the nth Legendre Polynomial |
94 |
> |
* @return the nth Legendre Polynomial |
95 |
|
* @param n |
96 |
|
*/ |
97 |
|
const DoublePolynomial& getLegendrePolynomial(int n) const { |
112 |
|
}; |
113 |
|
|
114 |
|
|
115 |
< |
} //end namespace OpenMD |
116 |
< |
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |
115 |
> |
} |
116 |
> |
#endif |
117 |
|
|