ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/LegendrePolynomial.hpp
Revision: 1850
Committed: Wed Feb 20 15:39:39 2013 UTC (12 years, 2 months ago) by gezelter
File size: 4029 byte(s)
Log Message:
Fixed a widespread typo in the license 

File Contents

# User Rev Content
1 tim 876 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 tim 876 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 tim 876 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1850 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 tim 876 */
42    
43     /**
44     * @file LegendrePolynomial.hpp
45     * @author teng lin
46     * @date 11/16/2004
47     * @version 1.0
48     */
49    
50 gezelter 1718 #ifndef MATH_LEGENDREPOLYNOMIALS_HPP
51     #define MATH_LEGENDREPOLYNOMIALS_HPP
52 tim 876
53     #include <vector>
54     #include <cassert>
55    
56     #include "math/Polynomial.hpp"
57    
58 gezelter 1390 namespace OpenMD {
59 tim 876
60     /**
61     * @class LegendrePolynomial
62 gezelter 1718 * A collection of Legendre Polynomials.
63 tim 876 * @todo document
64     */
65     class LegendrePolynomial {
66     public:
67     LegendrePolynomial(int maxPower);
68     virtual ~LegendrePolynomial() {}
69     /**
70 gezelter 1718 * Calculates the value of the nth Legendre Polynomial evaluated at the given x value.
71     * @return The value of the nth Legendre Polynomial evaluates at the given x value
72 tim 876 * @param n
73 gezelter 1718 * @param x the value of the independent variable for the nth Legendre Polynomial function
74 tim 876 */
75    
76 tim 963 RealType evaluate(int n, RealType x) {
77 tim 876 assert (n <= maxPower_ && n >=0);
78     return polyList_[n].evaluate(x);
79     }
80    
81     /**
82 gezelter 1718 * Returns the first derivative of the nth Legendre Polynomial.
83     * @return the first derivative of the nth Legendre Polynomial
84 tim 876 * @param n
85 gezelter 1718 * @param x the value of the independent variable for the nth Legendre Polynomial function
86 tim 876 */
87 tim 963 RealType evaluateDerivative(int n, RealType x) {
88 tim 876 assert (n <= maxPower_ && n >=0);
89     return polyList_[n].evaluateDerivative(x);
90     }
91    
92     /**
93 gezelter 1718 * Returns the nth Legendre Polynomial
94     * @return the nth Legendre Polynomial
95 tim 876 * @param n
96     */
97     const DoublePolynomial& getLegendrePolynomial(int n) const {
98     assert (n <= maxPower_ && n >=0);
99     return polyList_[n];
100     }
101    
102     protected:
103    
104     std::vector<DoublePolynomial> polyList_;
105    
106     private:
107    
108     void GeneratePolynomials(int maxPower);
109     virtual void GenerateFirstTwoTerms();
110    
111     int maxPower_;
112     };
113    
114    
115 gezelter 1718 }
116     #endif
117 tim 876

Properties

Name Value
svn:keywords Author Id Revision Date