1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/*========================================================================= |
43 |
|
44 |
Program: Visualization Toolkit |
45 |
Module: $RCSfile: LU.hpp,v $ |
46 |
|
47 |
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen |
48 |
All rights reserved. |
49 |
|
50 |
Redistribution and use in source and binary forms, with or without |
51 |
modification, are permitted provided that the following conditions are met: |
52 |
|
53 |
* Redistributions of source code must retain the above copyright notice, |
54 |
this list of conditions and the following disclaimer. |
55 |
|
56 |
* Redistributions in binary form must reproduce the above copyright notice, |
57 |
this list of conditions and the following disclaimer in the documentation |
58 |
and/or other materials provided with the distribution. |
59 |
|
60 |
* Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names |
61 |
of any contributors may be used to endorse or promote products derived |
62 |
from this software without specific prior written permission. |
63 |
|
64 |
* Modified source versions must be plainly marked as such, and must not be |
65 |
misrepresented as being the original software. |
66 |
|
67 |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' |
68 |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
69 |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
70 |
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR |
71 |
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
72 |
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
73 |
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
74 |
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
75 |
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
76 |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
77 |
|
78 |
=========================================================================*/ |
79 |
#ifndef MATH_LU_HPP |
80 |
#define MATH_LU_HPP |
81 |
|
82 |
#include "utils/NumericConstant.hpp" |
83 |
|
84 |
namespace OpenMD { |
85 |
|
86 |
/** |
87 |
* Invert input square matrix A into matrix AI. |
88 |
* @param A input square matrix |
89 |
* @param AI output square matrix |
90 |
* @return true if inverse is computed, otherwise return false |
91 |
* @note A is modified during the inversion |
92 |
*/ |
93 |
template<class MatrixType> |
94 |
bool invertMatrix(MatrixType& A, MatrixType& AI) |
95 |
{ |
96 |
typedef typename MatrixType::ElemType Real; |
97 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { |
98 |
return false; |
99 |
} |
100 |
|
101 |
int size = A.getNRow(); |
102 |
int *index=NULL, iScratch[10]; |
103 |
Real *column=NULL, dScratch[10]; |
104 |
|
105 |
// Check on allocation of working vectors |
106 |
// |
107 |
if ( size <= 10 ) { |
108 |
index = iScratch; |
109 |
column = dScratch; |
110 |
} else { |
111 |
index = new int[size]; |
112 |
column = new Real[size]; |
113 |
} |
114 |
|
115 |
bool retVal = invertMatrix(A, AI, size, index, column); |
116 |
|
117 |
if ( size > 10 ) { |
118 |
delete [] index; |
119 |
delete [] column; |
120 |
} |
121 |
|
122 |
return retVal; |
123 |
} |
124 |
|
125 |
/** |
126 |
* Invert input square matrix A into matrix AI (Thread safe versions). |
127 |
* @param A input square matrix |
128 |
* @param AI output square matrix |
129 |
* @param size size of the matrix and temporary arrays |
130 |
* @param tmp1Size temporary array |
131 |
* @param tmp2Size temporary array |
132 |
* @return true if inverse is computed, otherwise return false |
133 |
* @note A is modified during the inversion. |
134 |
*/ |
135 |
|
136 |
template<class MatrixType> |
137 |
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, |
138 |
int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) |
139 |
{ |
140 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { |
141 |
return false; |
142 |
} |
143 |
|
144 |
int i, j; |
145 |
|
146 |
// |
147 |
// Factor matrix; then begin solving for inverse one column at a time. |
148 |
// Note: tmp1Size returned value is used later, tmp2Size is just working |
149 |
// memory whose values are not used in LUSolveLinearSystem |
150 |
// |
151 |
if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ |
152 |
return false; |
153 |
} |
154 |
|
155 |
for ( j=0; j < size; j++ ) { |
156 |
for ( i=0; i < size; i++ ) { |
157 |
tmp2Size[i] = 0.0; |
158 |
} |
159 |
tmp2Size[j] = 1.0; |
160 |
|
161 |
LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); |
162 |
|
163 |
for ( i=0; i < size; i++ ) { |
164 |
AI(i, j) = tmp2Size[i]; |
165 |
} |
166 |
} |
167 |
|
168 |
return true; |
169 |
} |
170 |
|
171 |
/** |
172 |
* Factor linear equations Ax = b using LU decompostion A = LU where L is |
173 |
* lower triangular matrix and U is upper triangular matrix. |
174 |
* @param A input square matrix |
175 |
* @param index pivot indices |
176 |
* @param size size of the matrix and temporary arrays |
177 |
* @param tmpSize temporary array |
178 |
* @return true if inverse is computed, otherwise return false |
179 |
* @note A is modified during the inversion. |
180 |
*/ |
181 |
template<class MatrixType> |
182 |
int LUFactorLinearSystem(MatrixType& A, int *index, int size, |
183 |
typename MatrixType::ElemPoinerType tmpSize) |
184 |
{ |
185 |
typedef typename MatrixType::ElemType Real; |
186 |
int i, j, k; |
187 |
int maxI = 0; |
188 |
Real largest, temp1, temp2, sum; |
189 |
|
190 |
// |
191 |
// Loop over rows to get implicit scaling information |
192 |
// |
193 |
for ( i = 0; i < size; i++ ) { |
194 |
for ( largest = 0.0, j = 0; j < size; j++ ) { |
195 |
if ( (temp2 = fabs(A(i, j))) > largest ) { |
196 |
largest = temp2; |
197 |
} |
198 |
} |
199 |
|
200 |
if ( largest == 0.0 ) { |
201 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
202 |
return 0; |
203 |
} |
204 |
tmpSize[i] = 1.0 / largest; |
205 |
} |
206 |
// |
207 |
// Loop over all columns using Crout's method |
208 |
// |
209 |
for ( j = 0; j < size; j++ ) { |
210 |
for (i = 0; i < j; i++) { |
211 |
sum = A(i, j); |
212 |
for ( k = 0; k < i; k++ ) { |
213 |
sum -= A(i, k) * A(k, j); |
214 |
} |
215 |
A(i, j) = sum; |
216 |
} |
217 |
// |
218 |
// Begin search for largest pivot element |
219 |
// |
220 |
for ( largest = 0.0, i = j; i < size; i++ ) { |
221 |
sum = A(i, j); |
222 |
for ( k = 0; k < j; k++ ) { |
223 |
sum -= A(i, k) * A(k, j); |
224 |
} |
225 |
A(i, j) = sum; |
226 |
|
227 |
if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { |
228 |
largest = temp1; |
229 |
maxI = i; |
230 |
} |
231 |
} |
232 |
// |
233 |
// Check for row interchange |
234 |
// |
235 |
if ( j != maxI ) { |
236 |
for ( k = 0; k < size; k++ ) { |
237 |
temp1 = A(maxI, k); |
238 |
A(maxI, k) = A(j, k); |
239 |
A(j, k) = temp1; |
240 |
} |
241 |
tmpSize[maxI] = tmpSize[j]; |
242 |
} |
243 |
// |
244 |
// Divide by pivot element and perform elimination |
245 |
// |
246 |
index[j] = maxI; |
247 |
|
248 |
if ( fabs(A(j, j)) <= OpenMD::NumericConstant::epsilon ) { |
249 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
250 |
return false; |
251 |
} |
252 |
|
253 |
if ( j != (size-1) ) { |
254 |
temp1 = 1.0 / A(j, j); |
255 |
for ( i = j + 1; i < size; i++ ) { |
256 |
A(i, j) *= temp1; |
257 |
} |
258 |
} |
259 |
} |
260 |
|
261 |
return 1; |
262 |
} |
263 |
|
264 |
/** |
265 |
* Solve linear equations Ax = b using LU decompostion A = LU where L is |
266 |
* lower triangular matrix and U is upper triangular matrix. |
267 |
* @param A input square matrix |
268 |
* @param index pivot indices |
269 |
* @param size size of the matrix and temporary arrays |
270 |
* @param tmpSize temporary array |
271 |
* @return true if inverse is computed, otherwise return false |
272 |
* @note A=LU and index[] are generated from method LUFactorLinearSystem). |
273 |
* Also, solution vector is written directly over input load vector. |
274 |
*/ |
275 |
template<class MatrixType> |
276 |
void LUSolveLinearSystem(MatrixType& A, int *index, |
277 |
typename MatrixType::ElemPoinerType x, int size) |
278 |
{ |
279 |
typedef typename MatrixType::ElemType Real; |
280 |
int i, j, ii, idx; |
281 |
Real sum; |
282 |
// |
283 |
// Proceed with forward and backsubstitution for L and U |
284 |
// matrices. First, forward substitution. |
285 |
// |
286 |
for ( ii = -1, i = 0; i < size; i++ ) { |
287 |
idx = index[i]; |
288 |
sum = x[idx]; |
289 |
x[idx] = x[i]; |
290 |
|
291 |
if ( ii >= 0 ) { |
292 |
for ( j = ii; j <= (i-1); j++ ) { |
293 |
sum -= A(i, j)*x[j]; |
294 |
} |
295 |
} else if (sum) { |
296 |
ii = i; |
297 |
} |
298 |
|
299 |
x[i] = sum; |
300 |
} |
301 |
// |
302 |
// Now, back substitution |
303 |
// |
304 |
for ( i = size-1; i >= 0; i-- ) { |
305 |
sum = x[i]; |
306 |
for ( j = i + 1; j < size; j++ ) { |
307 |
sum -= A(i, j)*x[j]; |
308 |
} |
309 |
x[i] = sum / A(i, i); |
310 |
} |
311 |
} |
312 |
|
313 |
} |
314 |
|
315 |
#endif |