1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/*========================================================================= |
44 |
|
45 |
Program: Visualization Toolkit |
46 |
Module: $RCSfile: LU.hpp,v $ |
47 |
|
48 |
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen |
49 |
All rights reserved. |
50 |
|
51 |
Redistribution and use in source and binary forms, with or without |
52 |
modification, are permitted provided that the following conditions are met: |
53 |
|
54 |
* Redistributions of source code must retain the above copyright notice, |
55 |
this list of conditions and the following disclaimer. |
56 |
|
57 |
* Redistributions in binary form must reproduce the above copyright notice, |
58 |
this list of conditions and the following disclaimer in the documentation |
59 |
and/or other materials provided with the distribution. |
60 |
|
61 |
* Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names |
62 |
of any contributors may be used to endorse or promote products derived |
63 |
from this software without specific prior written permission. |
64 |
|
65 |
* Modified source versions must be plainly marked as such, and must not be |
66 |
misrepresented as being the original software. |
67 |
|
68 |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' |
69 |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
70 |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
71 |
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR |
72 |
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
73 |
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
74 |
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
75 |
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
76 |
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
77 |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
78 |
|
79 |
=========================================================================*/ |
80 |
#ifndef MATH_LU_HPP |
81 |
#define MATH_LU_HPP |
82 |
|
83 |
#include "utils/NumericConstant.hpp" |
84 |
|
85 |
namespace OpenMD { |
86 |
|
87 |
/** |
88 |
* Invert input square matrix A into matrix AI. |
89 |
* @param A input square matrix |
90 |
* @param AI output square matrix |
91 |
* @return true if inverse is computed, otherwise return false |
92 |
* @note A is modified during the inversion |
93 |
*/ |
94 |
template<class MatrixType> |
95 |
bool invertMatrix(MatrixType& A, MatrixType& AI) |
96 |
{ |
97 |
typedef typename MatrixType::ElemType Real; |
98 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { |
99 |
return false; |
100 |
} |
101 |
|
102 |
int size = A.getNRow(); |
103 |
int *index=NULL, iScratch[10]; |
104 |
Real *column=NULL, dScratch[10]; |
105 |
|
106 |
// Check on allocation of working vectors |
107 |
// |
108 |
if ( size <= 10 ) { |
109 |
index = iScratch; |
110 |
column = dScratch; |
111 |
} else { |
112 |
index = new int[size]; |
113 |
column = new Real[size]; |
114 |
} |
115 |
|
116 |
bool retVal = invertMatrix(A, AI, size, index, column); |
117 |
|
118 |
if ( size > 10 ) { |
119 |
delete [] index; |
120 |
delete [] column; |
121 |
} |
122 |
|
123 |
return retVal; |
124 |
} |
125 |
|
126 |
/** |
127 |
* Invert input square matrix A into matrix AI (Thread safe versions). |
128 |
* @param A input square matrix |
129 |
* @param AI output square matrix |
130 |
* @param size size of the matrix and temporary arrays |
131 |
* @param tmp1Size temporary array |
132 |
* @param tmp2Size temporary array |
133 |
* @return true if inverse is computed, otherwise return false |
134 |
* @note A is modified during the inversion. |
135 |
*/ |
136 |
|
137 |
template<class MatrixType> |
138 |
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, |
139 |
int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) |
140 |
{ |
141 |
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { |
142 |
return false; |
143 |
} |
144 |
|
145 |
int i, j; |
146 |
|
147 |
// |
148 |
// Factor matrix; then begin solving for inverse one column at a time. |
149 |
// Note: tmp1Size returned value is used later, tmp2Size is just working |
150 |
// memory whose values are not used in LUSolveLinearSystem |
151 |
// |
152 |
if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ |
153 |
return false; |
154 |
} |
155 |
|
156 |
for ( j=0; j < size; j++ ) { |
157 |
for ( i=0; i < size; i++ ) { |
158 |
tmp2Size[i] = 0.0; |
159 |
} |
160 |
tmp2Size[j] = 1.0; |
161 |
|
162 |
LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); |
163 |
|
164 |
for ( i=0; i < size; i++ ) { |
165 |
AI(i, j) = tmp2Size[i]; |
166 |
} |
167 |
} |
168 |
|
169 |
return true; |
170 |
} |
171 |
|
172 |
/** |
173 |
* Factor linear equations Ax = b using LU decompostion A = LU where L is |
174 |
* lower triangular matrix and U is upper triangular matrix. |
175 |
* @param A input square matrix |
176 |
* @param index pivot indices |
177 |
* @param size size of the matrix and temporary arrays |
178 |
* @param tmpSize temporary array |
179 |
* @return true if inverse is computed, otherwise return false |
180 |
* @note A is modified during the inversion. |
181 |
*/ |
182 |
template<class MatrixType> |
183 |
int LUFactorLinearSystem(MatrixType& A, int *index, int size, |
184 |
typename MatrixType::ElemPoinerType tmpSize) |
185 |
{ |
186 |
typedef typename MatrixType::ElemType Real; |
187 |
int i, j, k; |
188 |
int maxI = 0; |
189 |
Real largest, temp1, temp2, sum; |
190 |
|
191 |
// |
192 |
// Loop over rows to get implicit scaling information |
193 |
// |
194 |
for ( i = 0; i < size; i++ ) { |
195 |
for ( largest = 0.0, j = 0; j < size; j++ ) { |
196 |
if ( (temp2 = fabs(A(i, j))) > largest ) { |
197 |
largest = temp2; |
198 |
} |
199 |
} |
200 |
|
201 |
if ( largest == 0.0 ) { |
202 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
203 |
return 0; |
204 |
} |
205 |
tmpSize[i] = 1.0 / largest; |
206 |
} |
207 |
// |
208 |
// Loop over all columns using Crout's method |
209 |
// |
210 |
for ( j = 0; j < size; j++ ) { |
211 |
for (i = 0; i < j; i++) { |
212 |
sum = A(i, j); |
213 |
for ( k = 0; k < i; k++ ) { |
214 |
sum -= A(i, k) * A(k, j); |
215 |
} |
216 |
A(i, j) = sum; |
217 |
} |
218 |
// |
219 |
// Begin search for largest pivot element |
220 |
// |
221 |
for ( largest = 0.0, i = j; i < size; i++ ) { |
222 |
sum = A(i, j); |
223 |
for ( k = 0; k < j; k++ ) { |
224 |
sum -= A(i, k) * A(k, j); |
225 |
} |
226 |
A(i, j) = sum; |
227 |
|
228 |
if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { |
229 |
largest = temp1; |
230 |
maxI = i; |
231 |
} |
232 |
} |
233 |
// |
234 |
// Check for row interchange |
235 |
// |
236 |
if ( j != maxI ) { |
237 |
for ( k = 0; k < size; k++ ) { |
238 |
temp1 = A(maxI, k); |
239 |
A(maxI, k) = A(j, k); |
240 |
A(j, k) = temp1; |
241 |
} |
242 |
tmpSize[maxI] = tmpSize[j]; |
243 |
} |
244 |
// |
245 |
// Divide by pivot element and perform elimination |
246 |
// |
247 |
index[j] = maxI; |
248 |
|
249 |
if ( fabs(A(j, j)) <= OpenMD::NumericConstant::epsilon ) { |
250 |
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
251 |
return false; |
252 |
} |
253 |
|
254 |
if ( j != (size-1) ) { |
255 |
temp1 = 1.0 / A(j, j); |
256 |
for ( i = j + 1; i < size; i++ ) { |
257 |
A(i, j) *= temp1; |
258 |
} |
259 |
} |
260 |
} |
261 |
|
262 |
return 1; |
263 |
} |
264 |
|
265 |
/** |
266 |
* Solve linear equations Ax = b using LU decompostion A = LU where L is |
267 |
* lower triangular matrix and U is upper triangular matrix. |
268 |
* @param A input square matrix |
269 |
* @param index pivot indices |
270 |
* @param x vector |
271 |
* @param size size of the matrix and temporary arrays |
272 |
* @return true if inverse is computed, otherwise return false |
273 |
* @note A=LU and index[] are generated from method LUFactorLinearSystem). |
274 |
* Also, solution vector is written directly over input load vector. |
275 |
*/ |
276 |
template<class MatrixType> |
277 |
void LUSolveLinearSystem(MatrixType& A, int *index, |
278 |
typename MatrixType::ElemPoinerType x, int size) |
279 |
{ |
280 |
typedef typename MatrixType::ElemType Real; |
281 |
int i, j, ii, idx; |
282 |
Real sum; |
283 |
// |
284 |
// Proceed with forward and backsubstitution for L and U |
285 |
// matrices. First, forward substitution. |
286 |
// |
287 |
for ( ii = -1, i = 0; i < size; i++ ) { |
288 |
idx = index[i]; |
289 |
sum = x[idx]; |
290 |
x[idx] = x[i]; |
291 |
|
292 |
if ( ii >= 0 ) { |
293 |
for ( j = ii; j <= (i-1); j++ ) { |
294 |
sum -= A(i, j)*x[j]; |
295 |
} |
296 |
} else if (sum) { |
297 |
ii = i; |
298 |
} |
299 |
|
300 |
x[i] = sum; |
301 |
} |
302 |
// |
303 |
// Now, back substitution |
304 |
// |
305 |
for ( i = size-1; i >= 0; i-- ) { |
306 |
sum = x[i]; |
307 |
for ( j = i + 1; j < size; j++ ) { |
308 |
sum -= A(i, j)*x[j]; |
309 |
} |
310 |
x[i] = sum / A(i, i); |
311 |
} |
312 |
} |
313 |
|
314 |
} |
315 |
|
316 |
#endif |