1 |
tim |
891 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
|
|
/*========================================================================= |
43 |
|
|
|
44 |
|
|
Program: Visualization Toolkit |
45 |
|
|
Module: $RCSfile: LU.hpp,v $ |
46 |
|
|
|
47 |
|
|
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen |
48 |
|
|
All rights reserved. |
49 |
|
|
|
50 |
|
|
Redistribution and use in source and binary forms, with or without |
51 |
|
|
modification, are permitted provided that the following conditions are met: |
52 |
|
|
|
53 |
|
|
* Redistributions of source code must retain the above copyright notice, |
54 |
|
|
this list of conditions and the following disclaimer. |
55 |
|
|
|
56 |
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
57 |
|
|
this list of conditions and the following disclaimer in the documentation |
58 |
|
|
and/or other materials provided with the distribution. |
59 |
|
|
|
60 |
|
|
* Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names |
61 |
|
|
of any contributors may be used to endorse or promote products derived |
62 |
|
|
from this software without specific prior written permission. |
63 |
|
|
|
64 |
|
|
* Modified source versions must be plainly marked as such, and must not be |
65 |
|
|
misrepresented as being the original software. |
66 |
|
|
|
67 |
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' |
68 |
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
69 |
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
70 |
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR |
71 |
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
72 |
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
73 |
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
74 |
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
75 |
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
76 |
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
77 |
|
|
|
78 |
|
|
=========================================================================*/ |
79 |
|
|
#ifndef MATH_LU_HPP |
80 |
|
|
#define MATH_LU_HPP |
81 |
|
|
|
82 |
|
|
#include "utils/NumericConstant.hpp" |
83 |
|
|
|
84 |
|
|
namespace oopse { |
85 |
|
|
|
86 |
|
|
/** |
87 |
|
|
* Invert input square matrix A into matrix AI. |
88 |
|
|
* @param A input square matrix |
89 |
|
|
* @param AI output square matrix |
90 |
|
|
* @return true if inverse is computed, otherwise return false |
91 |
|
|
* @note A is modified during the inversion |
92 |
|
|
*/ |
93 |
|
|
template<class MatrixType> |
94 |
|
|
bool invertMatrix(MatrixType& A, MatrixType& AI) |
95 |
|
|
{ |
96 |
|
|
typedef typename MatrixType::ElemType Real; |
97 |
|
|
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { |
98 |
|
|
return false; |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
int size = A.getNRow(); |
102 |
|
|
int *index=NULL, iScratch[10]; |
103 |
|
|
Real *column=NULL, dScratch[10]; |
104 |
|
|
|
105 |
|
|
// Check on allocation of working vectors |
106 |
|
|
// |
107 |
|
|
if ( size <= 10 ) { |
108 |
|
|
index = iScratch; |
109 |
|
|
column = dScratch; |
110 |
|
|
} else { |
111 |
|
|
index = new int[size]; |
112 |
|
|
column = new Real[size]; |
113 |
|
|
} |
114 |
|
|
|
115 |
|
|
bool retVal = invertMatrix(A, AI, size, index, column); |
116 |
|
|
|
117 |
|
|
if ( size > 10 ) { |
118 |
|
|
delete [] index; |
119 |
|
|
delete [] column; |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
return retVal; |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
/** |
126 |
|
|
* Invert input square matrix A into matrix AI (Thread safe versions). |
127 |
|
|
* @param A input square matrix |
128 |
|
|
* @param AI output square matrix |
129 |
|
|
* @param size size of the matrix and temporary arrays |
130 |
|
|
* @param tmp1Size temporary array |
131 |
|
|
* @param tmp2Size temporary array |
132 |
|
|
* @return true if inverse is computed, otherwise return false |
133 |
|
|
* @note A is modified during the inversion. |
134 |
|
|
*/ |
135 |
|
|
|
136 |
|
|
template<class MatrixType> |
137 |
|
|
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, |
138 |
|
|
int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) |
139 |
|
|
{ |
140 |
|
|
if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { |
141 |
|
|
return false; |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
int i, j; |
145 |
|
|
|
146 |
|
|
// |
147 |
|
|
// Factor matrix; then begin solving for inverse one column at a time. |
148 |
|
|
// Note: tmp1Size returned value is used later, tmp2Size is just working |
149 |
|
|
// memory whose values are not used in LUSolveLinearSystem |
150 |
|
|
// |
151 |
|
|
if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ |
152 |
|
|
return false; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
for ( j=0; j < size; j++ ) { |
156 |
|
|
for ( i=0; i < size; i++ ) { |
157 |
|
|
tmp2Size[i] = 0.0; |
158 |
|
|
} |
159 |
|
|
tmp2Size[j] = 1.0; |
160 |
|
|
|
161 |
|
|
LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); |
162 |
|
|
|
163 |
|
|
for ( i=0; i < size; i++ ) { |
164 |
|
|
AI(i, j) = tmp2Size[i]; |
165 |
|
|
} |
166 |
|
|
} |
167 |
|
|
|
168 |
|
|
return true; |
169 |
|
|
} |
170 |
|
|
|
171 |
|
|
/** |
172 |
|
|
* Factor linear equations Ax = b using LU decompostion A = LU where L is |
173 |
|
|
* lower triangular matrix and U is upper triangular matrix. |
174 |
|
|
* @param A input square matrix |
175 |
|
|
* @param index pivot indices |
176 |
|
|
* @param size size of the matrix and temporary arrays |
177 |
|
|
* @param tmpSize temporary array |
178 |
|
|
* @return true if inverse is computed, otherwise return false |
179 |
|
|
* @note A is modified during the inversion. |
180 |
|
|
*/ |
181 |
|
|
template<class MatrixType> |
182 |
|
|
int LUFactorLinearSystem(MatrixType& A, int *index, int size, |
183 |
|
|
typename MatrixType::ElemPoinerType tmpSize) |
184 |
|
|
{ |
185 |
|
|
typedef typename MatrixType::ElemType Real; |
186 |
|
|
int i, j, k; |
187 |
|
|
int maxI = 0; |
188 |
|
|
Real largest, temp1, temp2, sum; |
189 |
|
|
|
190 |
|
|
// |
191 |
|
|
// Loop over rows to get implicit scaling information |
192 |
|
|
// |
193 |
|
|
for ( i = 0; i < size; i++ ) { |
194 |
|
|
for ( largest = 0.0, j = 0; j < size; j++ ) { |
195 |
|
|
if ( (temp2 = fabs(A(i, j))) > largest ) { |
196 |
|
|
largest = temp2; |
197 |
|
|
} |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
if ( largest == 0.0 ) { |
201 |
|
|
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
202 |
|
|
return 0; |
203 |
|
|
} |
204 |
|
|
tmpSize[i] = 1.0 / largest; |
205 |
|
|
} |
206 |
|
|
// |
207 |
|
|
// Loop over all columns using Crout's method |
208 |
|
|
// |
209 |
|
|
for ( j = 0; j < size; j++ ) { |
210 |
|
|
for (i = 0; i < j; i++) { |
211 |
|
|
sum = A(i, j); |
212 |
|
|
for ( k = 0; k < i; k++ ) { |
213 |
|
|
sum -= A(i, k) * A(k, j); |
214 |
|
|
} |
215 |
|
|
A(i, j) = sum; |
216 |
|
|
} |
217 |
|
|
// |
218 |
|
|
// Begin search for largest pivot element |
219 |
|
|
// |
220 |
|
|
for ( largest = 0.0, i = j; i < size; i++ ) { |
221 |
|
|
sum = A(i, j); |
222 |
|
|
for ( k = 0; k < j; k++ ) { |
223 |
|
|
sum -= A(i, k) * A(k, j); |
224 |
|
|
} |
225 |
|
|
A(i, j) = sum; |
226 |
|
|
|
227 |
|
|
if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { |
228 |
|
|
largest = temp1; |
229 |
|
|
maxI = i; |
230 |
|
|
} |
231 |
|
|
} |
232 |
|
|
// |
233 |
|
|
// Check for row interchange |
234 |
|
|
// |
235 |
|
|
if ( j != maxI ) { |
236 |
|
|
for ( k = 0; k < size; k++ ) { |
237 |
|
|
temp1 = A(maxI, k); |
238 |
|
|
A(maxI, k) = A(j, k); |
239 |
|
|
A(j, k) = temp1; |
240 |
|
|
} |
241 |
|
|
tmpSize[maxI] = tmpSize[j]; |
242 |
|
|
} |
243 |
|
|
// |
244 |
|
|
// Divide by pivot element and perform elimination |
245 |
|
|
// |
246 |
|
|
index[j] = maxI; |
247 |
|
|
|
248 |
|
|
if ( fabs(A(j, j)) <= oopse::NumericConstant::epsilon ) { |
249 |
|
|
//vtkGenericWarningMacro(<<"Unable to factor linear system"); |
250 |
|
|
return false; |
251 |
|
|
} |
252 |
|
|
|
253 |
|
|
if ( j != (size-1) ) { |
254 |
|
|
temp1 = 1.0 / A(j, j); |
255 |
|
|
for ( i = j + 1; i < size; i++ ) { |
256 |
|
|
A(i, j) *= temp1; |
257 |
|
|
} |
258 |
|
|
} |
259 |
|
|
} |
260 |
|
|
|
261 |
|
|
return 1; |
262 |
|
|
} |
263 |
|
|
|
264 |
|
|
/** |
265 |
|
|
* Solve linear equations Ax = b using LU decompostion A = LU where L is |
266 |
|
|
* lower triangular matrix and U is upper triangular matrix. |
267 |
|
|
* @param A input square matrix |
268 |
|
|
* @param index pivot indices |
269 |
|
|
* @param size size of the matrix and temporary arrays |
270 |
|
|
* @param tmpSize temporary array |
271 |
|
|
* @return true if inverse is computed, otherwise return false |
272 |
|
|
* @note A=LU and index[] are generated from method LUFactorLinearSystem). |
273 |
|
|
* Also, solution vector is written directly over input load vector. |
274 |
|
|
*/ |
275 |
|
|
template<class MatrixType> |
276 |
|
|
void LUSolveLinearSystem(MatrixType& A, int *index, |
277 |
|
|
typename MatrixType::ElemPoinerType x, int size) |
278 |
|
|
{ |
279 |
|
|
typedef typename MatrixType::ElemType Real; |
280 |
|
|
int i, j, ii, idx; |
281 |
|
|
Real sum; |
282 |
|
|
// |
283 |
|
|
// Proceed with forward and backsubstitution for L and U |
284 |
|
|
// matrices. First, forward substitution. |
285 |
|
|
// |
286 |
|
|
for ( ii = -1, i = 0; i < size; i++ ) { |
287 |
|
|
idx = index[i]; |
288 |
|
|
sum = x[idx]; |
289 |
|
|
x[idx] = x[i]; |
290 |
|
|
|
291 |
|
|
if ( ii >= 0 ) { |
292 |
|
|
for ( j = ii; j <= (i-1); j++ ) { |
293 |
|
|
sum -= A(i, j)*x[j]; |
294 |
|
|
} |
295 |
|
|
} else if (sum) { |
296 |
|
|
ii = i; |
297 |
|
|
} |
298 |
|
|
|
299 |
|
|
x[i] = sum; |
300 |
|
|
} |
301 |
|
|
// |
302 |
|
|
// Now, back substitution |
303 |
|
|
// |
304 |
|
|
for ( i = size-1; i >= 0; i-- ) { |
305 |
|
|
sum = x[i]; |
306 |
|
|
for ( j = i + 1; j < size; j++ ) { |
307 |
|
|
sum -= A(i, j)*x[j]; |
308 |
|
|
} |
309 |
|
|
x[i] = sum / A(i, i); |
310 |
|
|
} |
311 |
|
|
} |
312 |
|
|
|
313 |
|
|
} |
314 |
|
|
|
315 |
|
|
#endif |