1 |
#ifndef JAMA_EIG_H |
2 |
#define JAMA_EIG_H |
3 |
|
4 |
#include "math/DynamicRectMatrix.hpp" |
5 |
|
6 |
#include <algorithm> |
7 |
// for min(), max() below |
8 |
#include <cmath> |
9 |
// for abs() below |
10 |
|
11 |
using namespace OpenMD; |
12 |
using namespace std; |
13 |
|
14 |
namespace JAMA |
15 |
{ |
16 |
|
17 |
/** |
18 |
|
19 |
Computes eigenvalues and eigenvectors of a real (non-complex) |
20 |
matrix. |
21 |
<P> |
22 |
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is |
23 |
diagonal and the eigenvector matrix V is orthogonal. That is, |
24 |
the diagonal values of D are the eigenvalues, and |
25 |
V*V' = I, where I is the identity matrix. The columns of V |
26 |
represent the eigenvectors in the sense that A*V = V*D. |
27 |
|
28 |
<P> |
29 |
If A is not symmetric, then the eigenvalue matrix D is block diagonal |
30 |
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, |
31 |
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex |
32 |
eigenvalues look like |
33 |
<pre> |
34 |
|
35 |
u + iv . . . . . |
36 |
. u - iv . . . . |
37 |
. . a + ib . . . |
38 |
. . . a - ib . . |
39 |
. . . . x . |
40 |
. . . . . y |
41 |
</pre> |
42 |
then D looks like |
43 |
<pre> |
44 |
|
45 |
u v . . . . |
46 |
-v u . . . . |
47 |
. . a b . . |
48 |
. . -b a . . |
49 |
. . . . x . |
50 |
. . . . . y |
51 |
</pre> |
52 |
This keeps V a real matrix in both symmetric and non-symmetric |
53 |
cases, and A*V = V*D. |
54 |
|
55 |
<p> |
56 |
The matrix V may be badly |
57 |
conditioned, or even singular, so the validity of the equation |
58 |
A = V*D*inverse(V) depends upon the condition number of V. |
59 |
|
60 |
<p> |
61 |
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
62 |
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
63 |
**/ |
64 |
|
65 |
template <class Real> |
66 |
class Eigenvalue |
67 |
{ |
68 |
|
69 |
|
70 |
/** Row and column dimension (square matrix). */ |
71 |
int n; |
72 |
|
73 |
int issymmetric; /* boolean*/ |
74 |
|
75 |
/** Arrays for internal storage of eigenvalues. */ |
76 |
|
77 |
DynamicVector<Real> d; /* real part */ |
78 |
DynamicVector<Real> e; /* img part */ |
79 |
|
80 |
/** Array for internal storage of eigenvectors. */ |
81 |
DynamicRectMatrix<Real> V; |
82 |
|
83 |
/** Array for internal storage of nonsymmetric Hessenberg form. |
84 |
@serial internal storage of nonsymmetric Hessenberg form. |
85 |
*/ |
86 |
DynamicRectMatrix<Real> H; |
87 |
|
88 |
|
89 |
/** Working storage for nonsymmetric algorithm. |
90 |
@serial working storage for nonsymmetric algorithm. |
91 |
*/ |
92 |
DynamicVector<Real> ort; |
93 |
|
94 |
|
95 |
// Symmetric Householder reduction to tridiagonal form. |
96 |
|
97 |
void tred2() { |
98 |
|
99 |
// This is derived from the Algol procedures tred2 by |
100 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
101 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
102 |
// Fortran subroutine in EISPACK. |
103 |
|
104 |
for (int j = 0; j < n; j++) { |
105 |
d(j) = V(n-1,j); |
106 |
} |
107 |
|
108 |
// Householder reduction to tridiagonal form. |
109 |
|
110 |
for (int i = n-1; i > 0; i--) { |
111 |
|
112 |
// Scale to avoid under/overflow. |
113 |
|
114 |
Real scale = 0.0; |
115 |
Real h = 0.0; |
116 |
for (int k = 0; k < i; k++) { |
117 |
scale = scale + abs(d(k)); |
118 |
} |
119 |
if (scale == 0.0) { |
120 |
e(i) = d(i-1); |
121 |
for (int j = 0; j < i; j++) { |
122 |
d(j) = V(i-1,j); |
123 |
V(i,j) = 0.0; |
124 |
V(j,i) = 0.0; |
125 |
} |
126 |
} else { |
127 |
|
128 |
// Generate Householder vector. |
129 |
|
130 |
for (int k = 0; k < i; k++) { |
131 |
d(k) /= scale; |
132 |
h += d(k) * d(k); |
133 |
} |
134 |
Real f = d(i-1); |
135 |
Real g = sqrt(h); |
136 |
if (f > 0) { |
137 |
g = -g; |
138 |
} |
139 |
e(i) = scale * g; |
140 |
h = h - f * g; |
141 |
d(i-1) = f - g; |
142 |
for (int j = 0; j < i; j++) { |
143 |
e(j) = 0.0; |
144 |
} |
145 |
|
146 |
// Apply similarity transformation to remaining columns. |
147 |
|
148 |
for (int j = 0; j < i; j++) { |
149 |
f = d(j); |
150 |
V(j,i) = f; |
151 |
g = e(j) + V(j,j) * f; |
152 |
for (int k = j+1; k <= i-1; k++) { |
153 |
g += V(k,j) * d(k); |
154 |
e(k) += V(k,j) * f; |
155 |
} |
156 |
e(j) = g; |
157 |
} |
158 |
f = 0.0; |
159 |
for (int j = 0; j < i; j++) { |
160 |
e(j) /= h; |
161 |
f += e(j) * d(j); |
162 |
} |
163 |
Real hh = f / (h + h); |
164 |
for (int j = 0; j < i; j++) { |
165 |
e(j) -= hh * d(j); |
166 |
} |
167 |
for (int j = 0; j < i; j++) { |
168 |
f = d(j); |
169 |
g = e(j); |
170 |
for (int k = j; k <= i-1; k++) { |
171 |
V(k,j) -= (f * e(k) + g * d(k)); |
172 |
} |
173 |
d(j) = V(i-1,j); |
174 |
V(i,j) = 0.0; |
175 |
} |
176 |
} |
177 |
d(i) = h; |
178 |
} |
179 |
|
180 |
// Accumulate transformations. |
181 |
|
182 |
for (int i = 0; i < n-1; i++) { |
183 |
V(n-1,i) = V(i,i); |
184 |
V(i,i) = 1.0; |
185 |
Real h = d(i+1); |
186 |
if (h != 0.0) { |
187 |
for (int k = 0; k <= i; k++) { |
188 |
d(k) = V(k,i+1) / h; |
189 |
} |
190 |
for (int j = 0; j <= i; j++) { |
191 |
Real g = 0.0; |
192 |
for (int k = 0; k <= i; k++) { |
193 |
g += V(k,i+1) * V(k,j); |
194 |
} |
195 |
for (int k = 0; k <= i; k++) { |
196 |
V(k,j) -= g * d(k); |
197 |
} |
198 |
} |
199 |
} |
200 |
for (int k = 0; k <= i; k++) { |
201 |
V(k,i+1) = 0.0; |
202 |
} |
203 |
} |
204 |
for (int j = 0; j < n; j++) { |
205 |
d(j) = V(n-1,j); |
206 |
V(n-1,j) = 0.0; |
207 |
} |
208 |
V(n-1,n-1) = 1.0; |
209 |
e(0) = 0.0; |
210 |
} |
211 |
|
212 |
// Symmetric tridiagonal QL algorithm. |
213 |
|
214 |
void tql2 () { |
215 |
|
216 |
// This is derived from the Algol procedures tql2, by |
217 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
218 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
219 |
// Fortran subroutine in EISPACK. |
220 |
|
221 |
for (int i = 1; i < n; i++) { |
222 |
e(i-1) = e(i); |
223 |
} |
224 |
e(n-1) = 0.0; |
225 |
|
226 |
Real f = 0.0; |
227 |
Real tst1 = 0.0; |
228 |
Real eps = pow(2.0,-52.0); |
229 |
for (int l = 0; l < n; l++) { |
230 |
|
231 |
// Find small subdiagonal element |
232 |
|
233 |
tst1 = max(tst1,abs(d(l)) + abs(e(l))); |
234 |
int m = l; |
235 |
|
236 |
// Original while-loop from Java code |
237 |
while (m < n) { |
238 |
if (abs(e(m)) <= eps*tst1) { |
239 |
break; |
240 |
} |
241 |
m++; |
242 |
} |
243 |
|
244 |
|
245 |
// If m == l, d(l) is an eigenvalue, |
246 |
// otherwise, iterate. |
247 |
|
248 |
if (m > l) { |
249 |
int iter = 0; |
250 |
do { |
251 |
iter = iter + 1; // (Could check iteration count here.) |
252 |
|
253 |
// Compute implicit shift |
254 |
|
255 |
Real g = d(l); |
256 |
Real p = (d(l+1) - g) / (2.0 * e(l)); |
257 |
Real r = hypot(p,1.0); |
258 |
if (p < 0) { |
259 |
r = -r; |
260 |
} |
261 |
d(l) = e(l) / (p + r); |
262 |
d(l+1) = e(l) * (p + r); |
263 |
Real dl1 = d(l+1); |
264 |
Real h = g - d(l); |
265 |
for (int i = l+2; i < n; i++) { |
266 |
d(i) -= h; |
267 |
} |
268 |
f = f + h; |
269 |
|
270 |
// Implicit QL transformation. |
271 |
|
272 |
p = d(m); |
273 |
Real c = 1.0; |
274 |
Real c2 = c; |
275 |
Real c3 = c; |
276 |
Real el1 = e(l+1); |
277 |
Real s = 0.0; |
278 |
Real s2 = 0.0; |
279 |
for (int i = m-1; i >= l; i--) { |
280 |
c3 = c2; |
281 |
c2 = c; |
282 |
s2 = s; |
283 |
g = c * e(i); |
284 |
h = c * p; |
285 |
r = hypot(p,e(i)); |
286 |
e(i+1) = s * r; |
287 |
s = e(i) / r; |
288 |
c = p / r; |
289 |
p = c * d(i) - s * g; |
290 |
d(i+1) = h + s * (c * g + s * d(i)); |
291 |
|
292 |
// Accumulate transformation. |
293 |
|
294 |
for (int k = 0; k < n; k++) { |
295 |
h = V(k,i+1); |
296 |
V(k,i+1) = s * V(k,i) + c * h; |
297 |
V(k,i) = c * V(k,i) - s * h; |
298 |
} |
299 |
} |
300 |
p = -s * s2 * c3 * el1 * e(l) / dl1; |
301 |
e(l) = s * p; |
302 |
d(l) = c * p; |
303 |
|
304 |
// Check for convergence. |
305 |
|
306 |
} while (abs(e(l)) > eps*tst1); |
307 |
} |
308 |
d(l) = d(l) + f; |
309 |
e(l) = 0.0; |
310 |
} |
311 |
|
312 |
// Sort eigenvalues and corresponding vectors. |
313 |
|
314 |
for (int i = 0; i < n-1; i++) { |
315 |
int k = i; |
316 |
Real p = d(i); |
317 |
for (int j = i+1; j < n; j++) { |
318 |
if (d(j) < p) { |
319 |
k = j; |
320 |
p = d(j); |
321 |
} |
322 |
} |
323 |
if (k != i) { |
324 |
d(k) = d(i); |
325 |
d(i) = p; |
326 |
for (int j = 0; j < n; j++) { |
327 |
p = V(j,i); |
328 |
V(j,i) = V(j,k); |
329 |
V(j,k) = p; |
330 |
} |
331 |
} |
332 |
} |
333 |
} |
334 |
|
335 |
// Nonsymmetric reduction to Hessenberg form. |
336 |
|
337 |
void orthes () { |
338 |
|
339 |
// This is derived from the Algol procedures orthes and ortran, |
340 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
341 |
// Vol.ii-Linear Algebra, and the corresponding |
342 |
// Fortran subroutines in EISPACK. |
343 |
|
344 |
int low = 0; |
345 |
int high = n-1; |
346 |
|
347 |
for (int m = low+1; m <= high-1; m++) { |
348 |
|
349 |
// Scale column. |
350 |
|
351 |
Real scale = 0.0; |
352 |
for (int i = m; i <= high; i++) { |
353 |
scale = scale + abs(H(i,m-1)); |
354 |
} |
355 |
if (scale != 0.0) { |
356 |
|
357 |
// Compute Householder transformation. |
358 |
|
359 |
Real h = 0.0; |
360 |
for (int i = high; i >= m; i--) { |
361 |
ort(i) = H(i,m-1)/scale; |
362 |
h += ort(i) * ort(i); |
363 |
} |
364 |
Real g = sqrt(h); |
365 |
if (ort(m) > 0) { |
366 |
g = -g; |
367 |
} |
368 |
h = h - ort(m) * g; |
369 |
ort(m) = ort(m) - g; |
370 |
|
371 |
// Apply Householder similarity transformation |
372 |
// H = (I-u*u'/h)*H*(I-u*u')/h) |
373 |
|
374 |
for (int j = m; j < n; j++) { |
375 |
Real f = 0.0; |
376 |
for (int i = high; i >= m; i--) { |
377 |
f += ort(i)*H(i,j); |
378 |
} |
379 |
f = f/h; |
380 |
for (int i = m; i <= high; i++) { |
381 |
H(i,j) -= f*ort(i); |
382 |
} |
383 |
} |
384 |
|
385 |
for (int i = 0; i <= high; i++) { |
386 |
Real f = 0.0; |
387 |
for (int j = high; j >= m; j--) { |
388 |
f += ort(j)*H(i,j); |
389 |
} |
390 |
f = f/h; |
391 |
for (int j = m; j <= high; j++) { |
392 |
H(i,j) -= f*ort(j); |
393 |
} |
394 |
} |
395 |
ort(m) = scale*ort(m); |
396 |
H(m,m-1) = scale*g; |
397 |
} |
398 |
} |
399 |
|
400 |
// Accumulate transformations (Algol's ortran). |
401 |
|
402 |
for (int i = 0; i < n; i++) { |
403 |
for (int j = 0; j < n; j++) { |
404 |
V(i,j) = (i == j ? 1.0 : 0.0); |
405 |
} |
406 |
} |
407 |
|
408 |
for (int m = high-1; m >= low+1; m--) { |
409 |
if (H(m,m-1) != 0.0) { |
410 |
for (int i = m+1; i <= high; i++) { |
411 |
ort(i) = H(i,m-1); |
412 |
} |
413 |
for (int j = m; j <= high; j++) { |
414 |
Real g = 0.0; |
415 |
for (int i = m; i <= high; i++) { |
416 |
g += ort(i) * V(i,j); |
417 |
} |
418 |
// Double division avoids possible underflow |
419 |
g = (g / ort(m)) / H(m,m-1); |
420 |
for (int i = m; i <= high; i++) { |
421 |
V(i,j) += g * ort(i); |
422 |
} |
423 |
} |
424 |
} |
425 |
} |
426 |
} |
427 |
|
428 |
|
429 |
// Complex scalar division. |
430 |
|
431 |
Real cdivr, cdivi; |
432 |
void cdiv(Real xr, Real xi, Real yr, Real yi) { |
433 |
Real r,d; |
434 |
if (abs(yr) > abs(yi)) { |
435 |
r = yi/yr; |
436 |
d = yr + r*yi; |
437 |
cdivr = (xr + r*xi)/d; |
438 |
cdivi = (xi - r*xr)/d; |
439 |
} else { |
440 |
r = yr/yi; |
441 |
d = yi + r*yr; |
442 |
cdivr = (r*xr + xi)/d; |
443 |
cdivi = (r*xi - xr)/d; |
444 |
} |
445 |
} |
446 |
|
447 |
|
448 |
// Nonsymmetric reduction from Hessenberg to real Schur form. |
449 |
|
450 |
void hqr2 () { |
451 |
|
452 |
// This is derived from the Algol procedure hqr2, |
453 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
454 |
// Vol.ii-Linear Algebra, and the corresponding |
455 |
// Fortran subroutine in EISPACK. |
456 |
|
457 |
// Initialize |
458 |
|
459 |
int nn = this->n; |
460 |
int n = nn-1; |
461 |
int low = 0; |
462 |
int high = nn-1; |
463 |
Real eps = pow(2.0,-52.0); |
464 |
Real exshift = 0.0; |
465 |
Real p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
466 |
|
467 |
// Store roots isolated by balanc and compute matrix norm |
468 |
|
469 |
Real norm = 0.0; |
470 |
for (int i = 0; i < nn; i++) { |
471 |
if ((i < low) || (i > high)) { |
472 |
d(i) = H(i,i); |
473 |
e(i) = 0.0; |
474 |
} |
475 |
for (int j = max(i-1,0); j < nn; j++) { |
476 |
norm = norm + abs(H(i,j)); |
477 |
} |
478 |
} |
479 |
|
480 |
// Outer loop over eigenvalue index |
481 |
|
482 |
int iter = 0; |
483 |
while (n >= low) { |
484 |
|
485 |
// Look for single small sub-diagonal element |
486 |
|
487 |
int l = n; |
488 |
while (l > low) { |
489 |
s = abs(H(l-1,l-1)) + abs(H(l,l)); |
490 |
if (s == 0.0) { |
491 |
s = norm; |
492 |
} |
493 |
if (abs(H(l,l-1)) < eps * s) { |
494 |
break; |
495 |
} |
496 |
l--; |
497 |
} |
498 |
|
499 |
// Check for convergence |
500 |
// One root found |
501 |
|
502 |
if (l == n) { |
503 |
H(n,n) = H(n,n) + exshift; |
504 |
d(n) = H(n,n); |
505 |
e(n) = 0.0; |
506 |
n--; |
507 |
iter = 0; |
508 |
|
509 |
// Two roots found |
510 |
|
511 |
} else if (l == n-1) { |
512 |
w = H(n,n-1) * H(n-1,n); |
513 |
p = (H(n-1,n-1) - H(n,n)) / 2.0; |
514 |
q = p * p + w; |
515 |
z = sqrt(abs(q)); |
516 |
H(n,n) = H(n,n) + exshift; |
517 |
H(n-1,n-1) = H(n-1,n-1) + exshift; |
518 |
x = H(n,n); |
519 |
|
520 |
// Real pair |
521 |
|
522 |
if (q >= 0) { |
523 |
if (p >= 0) { |
524 |
z = p + z; |
525 |
} else { |
526 |
z = p - z; |
527 |
} |
528 |
d(n-1) = x + z; |
529 |
d(n) = d(n-1); |
530 |
if (z != 0.0) { |
531 |
d(n) = x - w / z; |
532 |
} |
533 |
e(n-1) = 0.0; |
534 |
e(n) = 0.0; |
535 |
x = H(n,n-1); |
536 |
s = abs(x) + abs(z); |
537 |
p = x / s; |
538 |
q = z / s; |
539 |
r = sqrt(p * p+q * q); |
540 |
p = p / r; |
541 |
q = q / r; |
542 |
|
543 |
// Row modification |
544 |
|
545 |
for (int j = n-1; j < nn; j++) { |
546 |
z = H(n-1,j); |
547 |
H(n-1,j) = q * z + p * H(n,j); |
548 |
H(n,j) = q * H(n,j) - p * z; |
549 |
} |
550 |
|
551 |
// Column modification |
552 |
|
553 |
for (int i = 0; i <= n; i++) { |
554 |
z = H(i,n-1); |
555 |
H(i,n-1) = q * z + p * H(i,n); |
556 |
H(i,n) = q * H(i,n) - p * z; |
557 |
} |
558 |
|
559 |
// Accumulate transformations |
560 |
|
561 |
for (int i = low; i <= high; i++) { |
562 |
z = V(i,n-1); |
563 |
V(i,n-1) = q * z + p * V(i,n); |
564 |
V(i,n) = q * V(i,n) - p * z; |
565 |
} |
566 |
|
567 |
// Complex pair |
568 |
|
569 |
} else { |
570 |
d(n-1) = x + p; |
571 |
d(n) = x + p; |
572 |
e(n-1) = z; |
573 |
e(n) = -z; |
574 |
} |
575 |
n = n - 2; |
576 |
iter = 0; |
577 |
|
578 |
// No convergence yet |
579 |
|
580 |
} else { |
581 |
|
582 |
// Form shift |
583 |
|
584 |
x = H(n,n); |
585 |
y = 0.0; |
586 |
w = 0.0; |
587 |
if (l < n) { |
588 |
y = H(n-1,n-1); |
589 |
w = H(n,n-1) * H(n-1,n); |
590 |
} |
591 |
|
592 |
// Wilkinson's original ad hoc shift |
593 |
|
594 |
if (iter == 10) { |
595 |
exshift += x; |
596 |
for (int i = low; i <= n; i++) { |
597 |
H(i,i) -= x; |
598 |
} |
599 |
s = abs(H(n,n-1)) + abs(H(n-1,n-2)); |
600 |
x = y = 0.75 * s; |
601 |
w = -0.4375 * s * s; |
602 |
} |
603 |
|
604 |
// MATLAB's new ad hoc shift |
605 |
|
606 |
if (iter == 30) { |
607 |
s = (y - x) / 2.0; |
608 |
s = s * s + w; |
609 |
if (s > 0) { |
610 |
s = sqrt(s); |
611 |
if (y < x) { |
612 |
s = -s; |
613 |
} |
614 |
s = x - w / ((y - x) / 2.0 + s); |
615 |
for (int i = low; i <= n; i++) { |
616 |
H(i,i) -= s; |
617 |
} |
618 |
exshift += s; |
619 |
x = y = w = 0.964; |
620 |
} |
621 |
} |
622 |
|
623 |
iter = iter + 1; // (Could check iteration count here.) |
624 |
|
625 |
// Look for two consecutive small sub-diagonal elements |
626 |
|
627 |
int m = n-2; |
628 |
while (m >= l) { |
629 |
z = H(m,m); |
630 |
r = x - z; |
631 |
s = y - z; |
632 |
p = (r * s - w) / H(m+1,m) + H(m,m+1); |
633 |
q = H(m+1,m+1) - z - r - s; |
634 |
r = H(m+2,m+1); |
635 |
s = abs(p) + abs(q) + abs(r); |
636 |
p = p / s; |
637 |
q = q / s; |
638 |
r = r / s; |
639 |
if (m == l) { |
640 |
break; |
641 |
} |
642 |
if (abs(H(m,m-1)) * (abs(q) + abs(r)) < |
643 |
eps * (abs(p) * (abs(H(m-1,m-1)) + abs(z) + |
644 |
abs(H(m+1,m+1))))) { |
645 |
break; |
646 |
} |
647 |
m--; |
648 |
} |
649 |
|
650 |
for (int i = m+2; i <= n; i++) { |
651 |
H(i,i-2) = 0.0; |
652 |
if (i > m+2) { |
653 |
H(i,i-3) = 0.0; |
654 |
} |
655 |
} |
656 |
|
657 |
// Double QR step involving rows l:n and columns m:n |
658 |
|
659 |
for (int k = m; k <= n-1; k++) { |
660 |
int notlast = (k != n-1); |
661 |
if (k != m) { |
662 |
p = H(k,k-1); |
663 |
q = H(k+1,k-1); |
664 |
r = (notlast ? H(k+2,k-1) : 0.0); |
665 |
x = abs(p) + abs(q) + abs(r); |
666 |
if (x != 0.0) { |
667 |
p = p / x; |
668 |
q = q / x; |
669 |
r = r / x; |
670 |
} |
671 |
} |
672 |
if (x == 0.0) { |
673 |
break; |
674 |
} |
675 |
s = sqrt(p * p + q * q + r * r); |
676 |
if (p < 0) { |
677 |
s = -s; |
678 |
} |
679 |
if (s != 0) { |
680 |
if (k != m) { |
681 |
H(k,k-1) = -s * x; |
682 |
} else if (l != m) { |
683 |
H(k,k-1) = -H(k,k-1); |
684 |
} |
685 |
p = p + s; |
686 |
x = p / s; |
687 |
y = q / s; |
688 |
z = r / s; |
689 |
q = q / p; |
690 |
r = r / p; |
691 |
|
692 |
// Row modification |
693 |
|
694 |
for (int j = k; j < nn; j++) { |
695 |
p = H(k,j) + q * H(k+1,j); |
696 |
if (notlast) { |
697 |
p = p + r * H(k+2,j); |
698 |
H(k+2,j) = H(k+2,j) - p * z; |
699 |
} |
700 |
H(k,j) = H(k,j) - p * x; |
701 |
H(k+1,j) = H(k+1,j) - p * y; |
702 |
} |
703 |
|
704 |
// Column modification |
705 |
|
706 |
for (int i = 0; i <= min(n,k+3); i++) { |
707 |
p = x * H(i,k) + y * H(i,k+1); |
708 |
if (notlast) { |
709 |
p = p + z * H(i,k+2); |
710 |
H(i,k+2) = H(i,k+2) - p * r; |
711 |
} |
712 |
H(i,k) = H(i,k) - p; |
713 |
H(i,k+1) = H(i,k+1) - p * q; |
714 |
} |
715 |
|
716 |
// Accumulate transformations |
717 |
|
718 |
for (int i = low; i <= high; i++) { |
719 |
p = x * V(i,k) + y * V(i,k+1); |
720 |
if (notlast) { |
721 |
p = p + z * V(i,k+2); |
722 |
V(i,k+2) = V(i,k+2) - p * r; |
723 |
} |
724 |
V(i,k) = V(i,k) - p; |
725 |
V(i,k+1) = V(i,k+1) - p * q; |
726 |
} |
727 |
} // (s != 0) |
728 |
} // k loop |
729 |
} // check convergence |
730 |
} // while (n >= low) |
731 |
|
732 |
// Backsubstitute to find vectors of upper triangular form |
733 |
|
734 |
if (norm == 0.0) { |
735 |
return; |
736 |
} |
737 |
|
738 |
for (n = nn-1; n >= 0; n--) { |
739 |
p = d(n); |
740 |
q = e(n); |
741 |
|
742 |
// Real vector |
743 |
|
744 |
if (q == 0) { |
745 |
int l = n; |
746 |
H(n,n) = 1.0; |
747 |
for (int i = n-1; i >= 0; i--) { |
748 |
w = H(i,i) - p; |
749 |
r = 0.0; |
750 |
for (int j = l; j <= n; j++) { |
751 |
r = r + H(i,j) * H(j,n); |
752 |
} |
753 |
if (e(i) < 0.0) { |
754 |
z = w; |
755 |
s = r; |
756 |
} else { |
757 |
l = i; |
758 |
if (e(i) == 0.0) { |
759 |
if (w != 0.0) { |
760 |
H(i,n) = -r / w; |
761 |
} else { |
762 |
H(i,n) = -r / (eps * norm); |
763 |
} |
764 |
|
765 |
// Solve real equations |
766 |
|
767 |
} else { |
768 |
x = H(i,i+1); |
769 |
y = H(i+1,i); |
770 |
q = (d(i) - p) * (d(i) - p) + e(i) * e(i); |
771 |
t = (x * s - z * r) / q; |
772 |
H(i,n) = t; |
773 |
if (abs(x) > abs(z)) { |
774 |
H(i+1,n) = (-r - w * t) / x; |
775 |
} else { |
776 |
H(i+1,n) = (-s - y * t) / z; |
777 |
} |
778 |
} |
779 |
|
780 |
// Overflow control |
781 |
|
782 |
t = abs(H(i,n)); |
783 |
if ((eps * t) * t > 1) { |
784 |
for (int j = i; j <= n; j++) { |
785 |
H(j,n) = H(j,n) / t; |
786 |
} |
787 |
} |
788 |
} |
789 |
} |
790 |
|
791 |
// Complex vector |
792 |
|
793 |
} else if (q < 0) { |
794 |
int l = n-1; |
795 |
|
796 |
// Last vector component imaginary so matrix is triangular |
797 |
|
798 |
if (abs(H(n,n-1)) > abs(H(n-1,n))) { |
799 |
H(n-1,n-1) = q / H(n,n-1); |
800 |
H(n-1,n) = -(H(n,n) - p) / H(n,n-1); |
801 |
} else { |
802 |
cdiv(0.0,-H(n-1,n),H(n-1,n-1)-p,q); |
803 |
H(n-1,n-1) = cdivr; |
804 |
H(n-1,n) = cdivi; |
805 |
} |
806 |
H(n,n-1) = 0.0; |
807 |
H(n,n) = 1.0; |
808 |
for (int i = n-2; i >= 0; i--) { |
809 |
Real ra,sa,vr,vi; |
810 |
ra = 0.0; |
811 |
sa = 0.0; |
812 |
for (int j = l; j <= n; j++) { |
813 |
ra = ra + H(i,j) * H(j,n-1); |
814 |
sa = sa + H(i,j) * H(j,n); |
815 |
} |
816 |
w = H(i,i) - p; |
817 |
|
818 |
if (e(i) < 0.0) { |
819 |
z = w; |
820 |
r = ra; |
821 |
s = sa; |
822 |
} else { |
823 |
l = i; |
824 |
if (e(i) == 0) { |
825 |
cdiv(-ra,-sa,w,q); |
826 |
H(i,n-1) = cdivr; |
827 |
H(i,n) = cdivi; |
828 |
} else { |
829 |
|
830 |
// Solve complex equations |
831 |
|
832 |
x = H(i,i+1); |
833 |
y = H(i+1,i); |
834 |
vr = (d(i) - p) * (d(i) - p) + e(i) * e(i) - q * q; |
835 |
vi = (d(i) - p) * 2.0 * q; |
836 |
if ((vr == 0.0) && (vi == 0.0)) { |
837 |
vr = eps * norm * (abs(w) + abs(q) + |
838 |
abs(x) + abs(y) + abs(z)); |
839 |
} |
840 |
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
841 |
H(i,n-1) = cdivr; |
842 |
H(i,n) = cdivi; |
843 |
if (abs(x) > (abs(z) + abs(q))) { |
844 |
H(i+1,n-1) = (-ra - w * H(i,n-1) + q * H(i,n)) / x; |
845 |
H(i+1,n) = (-sa - w * H(i,n) - q * H(i,n-1)) / x; |
846 |
} else { |
847 |
cdiv(-r-y*H(i,n-1),-s-y*H(i,n),z,q); |
848 |
H(i+1,n-1) = cdivr; |
849 |
H(i+1,n) = cdivi; |
850 |
} |
851 |
} |
852 |
|
853 |
// Overflow control |
854 |
|
855 |
t = max(abs(H(i,n-1)),abs(H(i,n))); |
856 |
if ((eps * t) * t > 1) { |
857 |
for (int j = i; j <= n; j++) { |
858 |
H(j,n-1) = H(j,n-1) / t; |
859 |
H(j,n) = H(j,n) / t; |
860 |
} |
861 |
} |
862 |
} |
863 |
} |
864 |
} |
865 |
} |
866 |
|
867 |
// Vectors of isolated roots |
868 |
|
869 |
for (int i = 0; i < nn; i++) { |
870 |
if (i < low || i > high) { |
871 |
for (int j = i; j < nn; j++) { |
872 |
V(i,j) = H(i,j); |
873 |
} |
874 |
} |
875 |
} |
876 |
|
877 |
// Back transformation to get eigenvectors of original matrix |
878 |
|
879 |
for (int j = nn-1; j >= low; j--) { |
880 |
for (int i = low; i <= high; i++) { |
881 |
z = 0.0; |
882 |
for (int k = low; k <= min(j,high); k++) { |
883 |
z = z + V(i,k) * H(k,j); |
884 |
} |
885 |
V(i,j) = z; |
886 |
} |
887 |
} |
888 |
} |
889 |
|
890 |
public: |
891 |
|
892 |
|
893 |
/** Check for symmetry, then construct the eigenvalue decomposition |
894 |
@param A Square real (non-complex) matrix |
895 |
*/ |
896 |
Eigenvalue(const DynamicRectMatrix<Real> &A) { |
897 |
n = A.getNCol(); |
898 |
V = DynamicRectMatrix<Real>(n,n); |
899 |
d = DynamicVector<Real>(n); |
900 |
e = DynamicVector<Real>(n); |
901 |
|
902 |
issymmetric = 1; |
903 |
for (int j = 0; (j < n) && issymmetric; j++) { |
904 |
for (int i = 0; (i < n) && issymmetric; i++) { |
905 |
issymmetric = (A(i,j) == A(j,i)); |
906 |
} |
907 |
} |
908 |
|
909 |
if (issymmetric) { |
910 |
for (int i = 0; i < n; i++) { |
911 |
for (int j = 0; j < n; j++) { |
912 |
V(i,j) = A(i,j); |
913 |
} |
914 |
} |
915 |
|
916 |
// Tridiagonalize. |
917 |
tred2(); |
918 |
|
919 |
// Diagonalize. |
920 |
tql2(); |
921 |
|
922 |
} else { |
923 |
H = DynamicRectMatrix<Real>(n,n); |
924 |
ort = DynamicVector<Real>(n); |
925 |
|
926 |
for (int j = 0; j < n; j++) { |
927 |
for (int i = 0; i < n; i++) { |
928 |
H(i,j) = A(i,j); |
929 |
} |
930 |
} |
931 |
|
932 |
// Reduce to Hessenberg form. |
933 |
orthes(); |
934 |
|
935 |
// Reduce Hessenberg to real Schur form. |
936 |
hqr2(); |
937 |
} |
938 |
} |
939 |
|
940 |
|
941 |
/** Return the eigenvector matrix |
942 |
@return V |
943 |
*/ |
944 |
void getV (DynamicRectMatrix<Real> &V_) { |
945 |
V_ = V; |
946 |
return; |
947 |
} |
948 |
|
949 |
/** Return the real parts of the eigenvalues |
950 |
@return real(diag(D)) |
951 |
*/ |
952 |
void getRealEigenvalues (DynamicVector<Real> &d_) { |
953 |
d_ = d; |
954 |
return ; |
955 |
} |
956 |
|
957 |
/** Return the imaginary parts of the eigenvalues |
958 |
in parameter e_. |
959 |
|
960 |
@param e_: new matrix with imaginary parts of the eigenvalues. |
961 |
*/ |
962 |
void getImagEigenvalues (DynamicVector<Real> &e_) { |
963 |
e_ = e; |
964 |
return; |
965 |
} |
966 |
|
967 |
|
968 |
/** |
969 |
Computes the block diagonal eigenvalue matrix. |
970 |
If the original matrix A is not symmetric, then the eigenvalue |
971 |
matrix D is block diagonal with the real eigenvalues in 1-by-1 |
972 |
blocks and any complex eigenvalues, |
973 |
a + i*b, in 2-by-2 blocks, (a, b; -b, a). That is, if the complex |
974 |
eigenvalues look like |
975 |
<pre> |
976 |
|
977 |
u + iv . . . . . |
978 |
. u - iv . . . . |
979 |
. . a + ib . . . |
980 |
. . . a - ib . . |
981 |
. . . . x . |
982 |
. . . . . y |
983 |
</pre> |
984 |
then D looks like |
985 |
<pre> |
986 |
|
987 |
u v . . . . |
988 |
-v u . . . . |
989 |
. . a b . . |
990 |
. . -b a . . |
991 |
. . . . x . |
992 |
. . . . . y |
993 |
</pre> |
994 |
This keeps V a real matrix in both symmetric and non-symmetric |
995 |
cases, and A*V = V*D. |
996 |
|
997 |
@param D: upon return, the matrix is filled with the block diagonal |
998 |
eigenvalue matrix. |
999 |
|
1000 |
*/ |
1001 |
void getD (DynamicRectMatrix<Real> &D) { |
1002 |
D = DynamicRectMatrix<Real>(n,n); |
1003 |
for (int i = 0; i < n; i++) { |
1004 |
for (int j = 0; j < n; j++) { |
1005 |
D(i,j) = 0.0; |
1006 |
} |
1007 |
D(i,i) = d(i); |
1008 |
if (e(i) > 0) { |
1009 |
D(i,i+1) = e(i); |
1010 |
} else if (e(i) < 0) { |
1011 |
D(i,i-1) = e(i); |
1012 |
} |
1013 |
} |
1014 |
} |
1015 |
}; |
1016 |
|
1017 |
} //namespace JAMA |
1018 |
|
1019 |
|
1020 |
#endif |
1021 |
// JAMA_EIG_H |