1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file DynamicVector.hpp |
45 |
* @author Teng Lin |
46 |
* @date 09/14/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#ifndef MATH_DYNAMICVECTOR_HPP |
51 |
#define MATH_DYNAMICVECTOR_HPP |
52 |
|
53 |
#include <cassert> |
54 |
#include <cmath> |
55 |
#include <iostream> |
56 |
#include <math.h> |
57 |
#include <algorithm> |
58 |
#include <vector> |
59 |
|
60 |
namespace OpenMD { |
61 |
|
62 |
/** |
63 |
* @class DynamicVector DynamicVector.hpp "math/DynamicVector.hpp" |
64 |
* @brief Fix length vector class |
65 |
*/ |
66 |
template<typename Real, typename Alloc = std::allocator<Real> > |
67 |
class DynamicVector : public std::vector<Real, Alloc> { |
68 |
|
69 |
public: |
70 |
typedef Real value_type; |
71 |
typedef std::vector<Real, Alloc> VectorType; |
72 |
typedef typename VectorType::pointer pointer; |
73 |
typedef typename VectorType::const_pointer const_pointer; |
74 |
typedef typename VectorType::reference reference; |
75 |
typedef typename VectorType::const_reference const_reference; |
76 |
typedef typename VectorType::iterator iterator; |
77 |
typedef typename VectorType::const_iterator const_iterator; |
78 |
typedef typename VectorType::const_reverse_iterator const_reverse_iterator; |
79 |
typedef typename VectorType::reverse_iterator reverse_iterator; |
80 |
typedef typename VectorType::size_type size_type; |
81 |
typedef typename VectorType::difference_type difference_type; |
82 |
typedef typename VectorType::allocator_type allocator_type; |
83 |
|
84 |
|
85 |
// [23.2.4.1] construct/copy/destroy |
86 |
// (assign() and get_allocator() are also listed in this section) |
87 |
/** |
88 |
* @brief Default constructor creates no elements. |
89 |
*/ explicit |
90 |
DynamicVector(const allocator_type& alloc = allocator_type()) |
91 |
: std::vector<Real, Alloc>(alloc) { } |
92 |
|
93 |
/** |
94 |
* @brief Create a %DynamicVector with copies of an exemplar element. |
95 |
* @param n The number of elements to initially create. |
96 |
* @param value An element to copy. |
97 |
* |
98 |
* This constructor fills the %DynamicVector with @a n copies of @a value. |
99 |
*/ |
100 |
DynamicVector(size_type n, const value_type& value, |
101 |
const allocator_type& alloc = allocator_type()) |
102 |
: std::vector<Real, Alloc>(n, value, alloc){ } |
103 |
|
104 |
/** |
105 |
* @brief Create a %DynamicVector with default elements. |
106 |
* @param n The number of elements to initially create. |
107 |
* |
108 |
* This constructor fills the %DynamicVector with @a n copies of a |
109 |
* default-constructed element. |
110 |
*/ |
111 |
explicit |
112 |
DynamicVector(size_type n) : std::vector<Real, Alloc>(n) { } |
113 |
|
114 |
/** |
115 |
* @brief %Vector copy constructor. |
116 |
* @param x A %DynamicVector of identical element and allocator types. |
117 |
* |
118 |
* The newly-created %DynamicVector uses a copy of the allocation |
119 |
* object used by @a x. All the elements of @a x are copied, |
120 |
* but any extra memory in |
121 |
* @a x (for fast expansion) will not be copied. |
122 |
*/ |
123 |
DynamicVector(const DynamicVector& x) |
124 |
: std::vector<Real, Alloc>(x) {} |
125 |
|
126 |
template<typename _InputIterator> |
127 |
DynamicVector(_InputIterator first, _InputIterator last, |
128 |
const allocator_type& alloc = allocator_type()) |
129 |
: std::vector<Real, Alloc>(first, last, alloc) {} |
130 |
|
131 |
inline Real operator()(unsigned int i) const{ |
132 |
return (*this)[i]; |
133 |
} |
134 |
|
135 |
inline Real& operator()(unsigned int i){ |
136 |
return (*this)[i]; |
137 |
} |
138 |
/** |
139 |
* Tests if this vetor is equal to other vector |
140 |
* @return true if equal, otherwise return false |
141 |
* @param v vector to be compared |
142 |
*/ |
143 |
inline bool operator ==(const DynamicVector<Real>& v) { |
144 |
|
145 |
for (unsigned int i = 0; i < this->size(); i ++) { |
146 |
if (!equal((*this)[i], v[i])) { |
147 |
return false; |
148 |
} |
149 |
} |
150 |
|
151 |
return true; |
152 |
} |
153 |
|
154 |
/** |
155 |
* Tests if this vetor is not equal to other vector |
156 |
* @return true if equal, otherwise return false |
157 |
* @param v vector to be compared |
158 |
*/ |
159 |
inline bool operator !=(const DynamicVector<Real>& v) { |
160 |
return !(*this == v); |
161 |
} |
162 |
|
163 |
/** Negates the value of this vector in place. */ |
164 |
inline void negate() { |
165 |
for (unsigned int i = 0; i < this->size(); i++) |
166 |
(*this)[i] = -(*this)[i]; |
167 |
} |
168 |
|
169 |
/** |
170 |
* Sets the value of this vector to the negation of vector v1. |
171 |
* @param v1 the source vector |
172 |
*/ |
173 |
inline void negate(const DynamicVector<Real>& v1) { |
174 |
for (unsigned int i = 0; i < this->size(); i++) |
175 |
(*this)[i] = -v1[i]; |
176 |
|
177 |
} |
178 |
|
179 |
/** |
180 |
* Sets the value of this vector to the sum of itself and v1 (*this += v1). |
181 |
* @param v1 the other vector |
182 |
*/ |
183 |
inline void add( const DynamicVector<Real>& v1 ) { |
184 |
std::transform(this->begin(), this->end(), v1.begin(),this->begin(),std::plus<Real>()); |
185 |
} |
186 |
|
187 |
/** |
188 |
* Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2). |
189 |
* @param v1 the first vector |
190 |
* @param v2 the second vector |
191 |
*/ |
192 |
inline void add( const DynamicVector<Real>& v1, const DynamicVector<Real>& v2 ) { |
193 |
std::transform(v1.begin(), v1.end(), v2.begin(),this->begin(),std::plus<Real>()); |
194 |
} |
195 |
|
196 |
/** |
197 |
* Sets the value of this vector to the difference of itself and v1 (*this -= v1). |
198 |
* @param v1 the other vector |
199 |
*/ |
200 |
inline void sub( const DynamicVector<Real>& v1 ) { |
201 |
std::transform(this->begin(), this->end(), v1.begin(),this->begin(),std::minus<Real>()); |
202 |
} |
203 |
|
204 |
/** |
205 |
* Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2). |
206 |
* @param v1 the first vector |
207 |
* @param v2 the second vector |
208 |
*/ |
209 |
inline void sub( const DynamicVector<Real>& v1, const DynamicVector &v2 ){ |
210 |
std::transform(v1.begin(), v1.end(), v2.begin(),this->begin(),std::minus<Real>()); |
211 |
} |
212 |
|
213 |
/** |
214 |
* Sets the value of this vector to the scalar multiplication of itself (*this *= s). |
215 |
* @param s the scalar value |
216 |
*/ |
217 |
inline void mul( Real s ) { |
218 |
for (unsigned int i = 0; i < this->size(); i++) |
219 |
(*this)[i] *= s; |
220 |
} |
221 |
|
222 |
/** |
223 |
* Sets the value of this vector to the scalar multiplication of vector v1 |
224 |
* (*this = s * v1). |
225 |
* @param v1 the vector |
226 |
* @param s the scalar value |
227 |
*/ |
228 |
inline void mul( const DynamicVector<Real>& v1, Real s) { |
229 |
this->resize(v1.size()); |
230 |
for (unsigned int i = 0; i < this->size(); i++) |
231 |
(*this)[i] = s * v1[i]; |
232 |
} |
233 |
|
234 |
/** |
235 |
* Sets the value of this vector to the scalar division of itself (*this /= s ). |
236 |
* @param s the scalar value |
237 |
*/ |
238 |
inline void div( Real s) { |
239 |
for (unsigned int i = 0; i < this->size(); i++) |
240 |
(*this)[i] /= s; |
241 |
} |
242 |
|
243 |
/** |
244 |
* Sets the value of this vector to the scalar division of vector v1 (*this = v1 / s ). |
245 |
* @param v1 the source vector |
246 |
* @param s the scalar value |
247 |
*/ |
248 |
inline void div( const DynamicVector<Real>& v1, Real s ) { |
249 |
for (unsigned int i = 0; i < this->size(); i++) |
250 |
(*this)[i] = v1[i] / s; |
251 |
} |
252 |
|
253 |
/** @see #add */ |
254 |
inline DynamicVector<Real>& operator +=( const DynamicVector<Real>& v1 ) { |
255 |
add(v1); |
256 |
return *this; |
257 |
} |
258 |
|
259 |
/** @see #sub */ |
260 |
inline DynamicVector<Real>& operator -=( const DynamicVector<Real>& v1 ) { |
261 |
sub(v1); |
262 |
return *this; |
263 |
} |
264 |
|
265 |
/** @see #mul */ |
266 |
inline DynamicVector<Real>& operator *=( Real s) { |
267 |
mul(s); |
268 |
return *this; |
269 |
} |
270 |
|
271 |
/** @see #div */ |
272 |
inline DynamicVector<Real>& operator /=( Real s ) { |
273 |
div(s); |
274 |
return *this; |
275 |
} |
276 |
|
277 |
/** zero out the vector */ |
278 |
inline void setZero( ) { |
279 |
for (unsigned int i = 0; i < this->size(); i++) |
280 |
(*this)[i] = 0; |
281 |
} |
282 |
|
283 |
/** |
284 |
* Returns the length of this vector. |
285 |
* @return the length of this vector |
286 |
*/ |
287 |
inline Real length() { |
288 |
return sqrt(lengthSquare()); |
289 |
} |
290 |
|
291 |
/** |
292 |
* Returns the squared length of this vector. |
293 |
* @return the squared length of this vector |
294 |
*/ |
295 |
inline Real lengthSquare() { |
296 |
return dot(*this, *this); |
297 |
} |
298 |
|
299 |
/** Normalizes this vector in place */ |
300 |
inline void normalize() { |
301 |
Real len; |
302 |
|
303 |
len = length(); |
304 |
|
305 |
//if (len < OpenMD::NumericConstant::epsilon) |
306 |
// throw(); |
307 |
|
308 |
*this /= len; |
309 |
} |
310 |
|
311 |
/** |
312 |
* Tests if this vector is normalized |
313 |
* @return true if this vector is normalized, otherwise return false |
314 |
*/ |
315 |
inline bool isNormalized() { |
316 |
return equal(lengthSquare(), 1.0); |
317 |
} |
318 |
|
319 |
template<class VectorType> |
320 |
void getSubVector(unsigned int beginning, VectorType& v) { |
321 |
assert(beginning + v.size() -1 <= this->size()); |
322 |
|
323 |
for (unsigned int i = 0; i < v.size(); ++i) |
324 |
v(i) = (*this)[beginning+i]; |
325 |
} |
326 |
|
327 |
|
328 |
}; |
329 |
|
330 |
/** unary minus*/ |
331 |
template<typename Real> |
332 |
inline DynamicVector<Real> operator -(const DynamicVector<Real>& v1){ |
333 |
DynamicVector<Real> tmp(v1); |
334 |
tmp.negate(); |
335 |
return tmp; |
336 |
} |
337 |
|
338 |
/** |
339 |
* Return the sum of two vectors (v1 - v2). |
340 |
* @return the sum of two vectors |
341 |
* @param v1 the first vector |
342 |
* @param v2 the second vector |
343 |
*/ |
344 |
template<typename Real> |
345 |
inline DynamicVector<Real> operator +(const DynamicVector<Real>& v1, const DynamicVector<Real>& v2) { |
346 |
assert(v1.size() == v2.size()); |
347 |
DynamicVector<Real>result(v1.size()); |
348 |
result.add(v1, v2); |
349 |
return result; |
350 |
} |
351 |
|
352 |
/** |
353 |
* Return the difference of two vectors (v1 - v2). |
354 |
* @return the difference of two vectors |
355 |
* @param v1 the first vector |
356 |
* @param v2 the second vector |
357 |
*/ |
358 |
template<typename Real> |
359 |
DynamicVector<Real> operator -(const DynamicVector<Real>& v1, const DynamicVector<Real>& v2) { |
360 |
assert(v1.size() == v2.size()); |
361 |
DynamicVector<Real> result(v1.size()); |
362 |
result.sub(v1, v2); |
363 |
return result; |
364 |
} |
365 |
|
366 |
/** |
367 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
368 |
* @return the vaule of scalar multiplication of this vector |
369 |
* @param v1 the source vector |
370 |
* @param s the scalar value |
371 |
*/ |
372 |
template<typename Real> |
373 |
DynamicVector<Real> operator *( const DynamicVector<Real>& v1, Real s) { |
374 |
DynamicVector<Real> result(v1.size()); |
375 |
result.mul(v1,s); |
376 |
return result; |
377 |
} |
378 |
|
379 |
/** |
380 |
* Returns the vaule of scalar multiplication of this vector v1 (v1 * r). |
381 |
* @return the vaule of scalar multiplication of this vector |
382 |
* @param s the scalar value |
383 |
* @param v1 the source vector |
384 |
*/ |
385 |
template<typename Real> |
386 |
DynamicVector<Real> operator *( Real s, const DynamicVector<Real>& v1 ) { |
387 |
DynamicVector<Real> result(v1.size()); |
388 |
result.mul(v1, s); |
389 |
return result; |
390 |
} |
391 |
|
392 |
/** |
393 |
* Returns the value of division of a vector by a scalar. |
394 |
* @return the vaule of scalar division of this vector |
395 |
* @param v1 the source vector |
396 |
* @param s the scalar value |
397 |
*/ |
398 |
template<typename Real> |
399 |
DynamicVector<Real> operator / ( const DynamicVector<Real>& v1, Real s) { |
400 |
DynamicVector<Real> result(v1.size()); |
401 |
result.div( v1,s); |
402 |
return result; |
403 |
} |
404 |
|
405 |
/** |
406 |
* Returns the dot product of two DynamicVectors |
407 |
* @param v1 first vector |
408 |
* @param v2 second vector |
409 |
* @return the dot product of v1 and v2 |
410 |
*/ |
411 |
template<typename Real> |
412 |
inline Real dot( const DynamicVector<Real>& v1, const DynamicVector<Real>& v2 ) { |
413 |
Real tmp; |
414 |
tmp = 0; |
415 |
assert(v1.size() == v2.size()); |
416 |
for (unsigned int i = 0; i < v1.size(); i++) |
417 |
tmp += v1[i] * v2[i]; |
418 |
|
419 |
return tmp; |
420 |
} |
421 |
|
422 |
/** |
423 |
* Returns the distance between two DynamicVectors |
424 |
* @param v1 first vector |
425 |
* @param v2 second vector |
426 |
* @return the distance between v1 and v2 |
427 |
*/ |
428 |
template<typename Real> |
429 |
inline Real distance( const DynamicVector<Real>& v1, const DynamicVector<Real>& v2 ) { |
430 |
DynamicVector<Real> tempDynamicVector = v1 - v2; |
431 |
return tempDynamicVector.length(); |
432 |
} |
433 |
|
434 |
/** |
435 |
* Returns the squared distance between two DynamicVectors |
436 |
* @param v1 first vector |
437 |
* @param v2 second vector |
438 |
* @return the squared distance between v1 and v2 |
439 |
*/ |
440 |
template<typename Real> |
441 |
inline Real distanceSquare( const DynamicVector<Real>& v1, const DynamicVector<Real>& v2 ) { |
442 |
DynamicVector<Real> tempDynamicVector = v1 - v2; |
443 |
return tempDynamicVector.lengthSquare(); |
444 |
} |
445 |
|
446 |
/** |
447 |
* Write to an output stream |
448 |
*/ |
449 |
template<typename Real> |
450 |
std::ostream &operator<< ( std::ostream& o, const DynamicVector<Real>& v) { |
451 |
|
452 |
o << "[ "; |
453 |
|
454 |
for (unsigned int i = 0 ; i< v.size(); i++) { |
455 |
o << v[i]; |
456 |
|
457 |
if (i != v.size() -1) { |
458 |
o<< ", "; |
459 |
} |
460 |
} |
461 |
|
462 |
o << " ]"; |
463 |
return o; |
464 |
} |
465 |
|
466 |
} |
467 |
#endif |
468 |
|