| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 188 | 
  | 
  return; | 
| 189 | 
  | 
} | 
| 190 | 
  | 
 | 
| 191 | 
< | 
RealType CubicSpline::getValueAt(RealType t) { | 
| 191 | 
> | 
RealType CubicSpline::getValueAt(const RealType& t) { | 
| 192 | 
  | 
  // Evaluate the spline at t using coefficients  | 
| 193 | 
  | 
  // | 
| 194 | 
  | 
  // Input parameters | 
| 198 | 
  | 
   | 
| 199 | 
  | 
  if (!generated) generate(); | 
| 200 | 
  | 
   | 
| 201 | 
< | 
  assert(t < data_.front().first); | 
| 202 | 
< | 
  assert(t > data_.back().first); | 
| 201 | 
> | 
  assert(t > data_.front().first); | 
| 202 | 
> | 
  assert(t < data_.back().first); | 
| 203 | 
  | 
 | 
| 204 | 
  | 
  //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 205 | 
  | 
  //  to t. | 
| 227 | 
  | 
} | 
| 228 | 
  | 
 | 
| 229 | 
  | 
 | 
| 230 | 
< | 
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { | 
| 230 | 
> | 
void CubicSpline::getValueAt(const RealType& t, RealType& v) { | 
| 231 | 
> | 
  // Evaluate the spline at t using coefficients  | 
| 232 | 
> | 
  // | 
| 233 | 
> | 
  // Input parameters | 
| 234 | 
> | 
  //   t = point where spline is to be evaluated. | 
| 235 | 
> | 
  // Output: | 
| 236 | 
> | 
  //   value of spline at t. | 
| 237 | 
> | 
   | 
| 238 | 
> | 
  if (!generated) generate(); | 
| 239 | 
> | 
   | 
| 240 | 
> | 
  assert(t > data_.front().first); | 
| 241 | 
> | 
  assert(t < data_.back().first); | 
| 242 | 
> | 
 | 
| 243 | 
> | 
  //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 244 | 
> | 
  //  to t. | 
| 245 | 
> | 
 | 
| 246 | 
> | 
  if (isUniform) {     | 
| 247 | 
> | 
     | 
| 248 | 
> | 
    j = max(0, min(n-1, int((t - data_[0].first) * dx)));    | 
| 249 | 
> | 
 | 
| 250 | 
> | 
  } else {  | 
| 251 | 
> | 
 | 
| 252 | 
> | 
    j = n-1; | 
| 253 | 
> | 
     | 
| 254 | 
> | 
    for (int i = 0; i < n; i++) { | 
| 255 | 
> | 
      if ( t < data_[i].first ) { | 
| 256 | 
> | 
        j = i-1; | 
| 257 | 
> | 
        break; | 
| 258 | 
> | 
      }       | 
| 259 | 
> | 
    } | 
| 260 | 
> | 
  } | 
| 261 | 
> | 
   | 
| 262 | 
> | 
  //  Evaluate the cubic polynomial. | 
| 263 | 
> | 
   | 
| 264 | 
> | 
  dt = t - data_[j].first; | 
| 265 | 
> | 
  v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j]));   | 
| 266 | 
> | 
} | 
| 267 | 
> | 
 | 
| 268 | 
> | 
 | 
| 269 | 
> | 
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(const RealType& t){ | 
| 270 | 
  | 
  // Evaluate the spline and first derivative at t using coefficients  | 
| 271 | 
  | 
  // | 
| 272 | 
  | 
  // Input parameters | 
| 276 | 
  | 
 | 
| 277 | 
  | 
  if (!generated) generate(); | 
| 278 | 
  | 
   | 
| 279 | 
< | 
  assert(t < data_.front().first); | 
| 280 | 
< | 
  assert(t > data_.back().first); | 
| 279 | 
> | 
  assert(t > data_.front().first); | 
| 280 | 
> | 
  assert(t < data_.back().first); | 
| 281 | 
  | 
 | 
| 282 | 
  | 
  //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 283 | 
  | 
  //  to t. | 
| 303 | 
  | 
  dt = t - data_[j].first; | 
| 304 | 
  | 
 | 
| 305 | 
  | 
  yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 306 | 
< | 
  dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | 
| 307 | 
< | 
   | 
| 306 | 
> | 
  dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]);  | 
| 307 | 
> | 
 | 
| 308 | 
  | 
  return make_pair(yval, dydx); | 
| 309 | 
  | 
} | 
| 310 | 
+ | 
 | 
| 311 | 
+ | 
void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v,  | 
| 312 | 
+ | 
                                          RealType &dv) { | 
| 313 | 
+ | 
  // Evaluate the spline and first derivative at t using coefficients  | 
| 314 | 
+ | 
  // | 
| 315 | 
+ | 
  // Input parameters | 
| 316 | 
+ | 
  //   t = point where spline is to be evaluated. | 
| 317 | 
+ | 
 | 
| 318 | 
+ | 
  if (!generated) generate(); | 
| 319 | 
+ | 
   | 
| 320 | 
+ | 
  assert(t > data_.front().first); | 
| 321 | 
+ | 
  assert(t < data_.back().first); | 
| 322 | 
+ | 
 | 
| 323 | 
+ | 
  //  Find the interval ( x[j], x[j+1] ) that contains or is nearest | 
| 324 | 
+ | 
  //  to t. | 
| 325 | 
+ | 
 | 
| 326 | 
+ | 
  if (isUniform) {     | 
| 327 | 
+ | 
     | 
| 328 | 
+ | 
    j = max(0, min(n-1, int((t - data_[0].first) * dx)));    | 
| 329 | 
+ | 
 | 
| 330 | 
+ | 
  } else {  | 
| 331 | 
+ | 
 | 
| 332 | 
+ | 
    j = n-1; | 
| 333 | 
+ | 
     | 
| 334 | 
+ | 
    for (int i = 0; i < n; i++) { | 
| 335 | 
+ | 
      if ( t < data_[i].first ) { | 
| 336 | 
+ | 
        j = i-1; | 
| 337 | 
+ | 
        break; | 
| 338 | 
+ | 
      }       | 
| 339 | 
+ | 
    } | 
| 340 | 
+ | 
  } | 
| 341 | 
+ | 
   | 
| 342 | 
+ | 
  //  Evaluate the cubic polynomial. | 
| 343 | 
+ | 
   | 
| 344 | 
+ | 
  dt = t - data_[j].first; | 
| 345 | 
+ | 
 | 
| 346 | 
+ | 
  v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); | 
| 347 | 
+ | 
  dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]);  | 
| 348 | 
+ | 
} |