188 |
|
return; |
189 |
|
} |
190 |
|
|
191 |
< |
RealType CubicSpline::getValueAt(RealType t) { |
191 |
> |
RealType CubicSpline::getValueAt(const RealType& t) { |
192 |
|
// Evaluate the spline at t using coefficients |
193 |
|
// |
194 |
|
// Input parameters |
227 |
|
} |
228 |
|
|
229 |
|
|
230 |
< |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
230 |
> |
void CubicSpline::getValueAt(const RealType& t, RealType& v) { |
231 |
> |
// Evaluate the spline at t using coefficients |
232 |
> |
// |
233 |
> |
// Input parameters |
234 |
> |
// t = point where spline is to be evaluated. |
235 |
> |
// Output: |
236 |
> |
// value of spline at t. |
237 |
> |
|
238 |
> |
if (!generated) generate(); |
239 |
> |
|
240 |
> |
assert(t > data_.front().first); |
241 |
> |
assert(t < data_.back().first); |
242 |
> |
|
243 |
> |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
244 |
> |
// to t. |
245 |
> |
|
246 |
> |
if (isUniform) { |
247 |
> |
|
248 |
> |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
249 |
> |
|
250 |
> |
} else { |
251 |
> |
|
252 |
> |
j = n-1; |
253 |
> |
|
254 |
> |
for (int i = 0; i < n; i++) { |
255 |
> |
if ( t < data_[i].first ) { |
256 |
> |
j = i-1; |
257 |
> |
break; |
258 |
> |
} |
259 |
> |
} |
260 |
> |
} |
261 |
> |
|
262 |
> |
// Evaluate the cubic polynomial. |
263 |
> |
|
264 |
> |
dt = t - data_[j].first; |
265 |
> |
v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
266 |
> |
} |
267 |
> |
|
268 |
> |
|
269 |
> |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(const RealType& t){ |
270 |
|
// Evaluate the spline and first derivative at t using coefficients |
271 |
|
// |
272 |
|
// Input parameters |
303 |
|
dt = t - data_[j].first; |
304 |
|
|
305 |
|
yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
306 |
< |
dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
307 |
< |
|
306 |
> |
dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
307 |
> |
|
308 |
|
return make_pair(yval, dydx); |
309 |
|
} |
310 |
+ |
|
311 |
+ |
void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v, |
312 |
+ |
RealType &dv) { |
313 |
+ |
// Evaluate the spline and first derivative at t using coefficients |
314 |
+ |
// |
315 |
+ |
// Input parameters |
316 |
+ |
// t = point where spline is to be evaluated. |
317 |
+ |
|
318 |
+ |
if (!generated) generate(); |
319 |
+ |
|
320 |
+ |
assert(t > data_.front().first); |
321 |
+ |
assert(t < data_.back().first); |
322 |
+ |
|
323 |
+ |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
324 |
+ |
// to t. |
325 |
+ |
|
326 |
+ |
if (isUniform) { |
327 |
+ |
|
328 |
+ |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
329 |
+ |
|
330 |
+ |
} else { |
331 |
+ |
|
332 |
+ |
j = n-1; |
333 |
+ |
|
334 |
+ |
for (int i = 0; i < n; i++) { |
335 |
+ |
if ( t < data_[i].first ) { |
336 |
+ |
j = i-1; |
337 |
+ |
break; |
338 |
+ |
} |
339 |
+ |
} |
340 |
+ |
} |
341 |
+ |
|
342 |
+ |
// Evaluate the cubic polynomial. |
343 |
+ |
|
344 |
+ |
dt = t - data_[j].first; |
345 |
+ |
|
346 |
+ |
v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
347 |
+ |
dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
348 |
+ |
} |